Properties

Label 2-8379-1.1-c1-0-251
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.71·2-s + 5.37·4-s + 3.22·5-s + 9.15·8-s + 8.74·10-s − 2.20·11-s − 2·13-s + 14.1·16-s + 3.22·17-s − 19-s + 17.3·20-s − 5.99·22-s + 1.01·23-s + 5.37·25-s − 5.43·26-s + 1.01·29-s − 4.74·31-s + 20.0·32-s + 8.74·34-s + 10.7·37-s − 2.71·38-s + 29.4·40-s + 5.43·41-s − 11.1·43-s − 11.8·44-s + 2.74·46-s + 4.23·47-s + ⋯
L(s)  = 1  + 1.91·2-s + 2.68·4-s + 1.44·5-s + 3.23·8-s + 2.76·10-s − 0.666·11-s − 0.554·13-s + 3.52·16-s + 0.781·17-s − 0.229·19-s + 3.86·20-s − 1.27·22-s + 0.210·23-s + 1.07·25-s − 1.06·26-s + 0.187·29-s − 0.852·31-s + 3.53·32-s + 1.49·34-s + 1.76·37-s − 0.440·38-s + 4.66·40-s + 0.848·41-s − 1.69·43-s − 1.78·44-s + 0.404·46-s + 0.617·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(10.38883191\)
\(L(\frac12)\) \(\approx\) \(10.38883191\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 2.71T + 2T^{2} \)
5 \( 1 - 3.22T + 5T^{2} \)
11 \( 1 + 2.20T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 - 3.22T + 17T^{2} \)
23 \( 1 - 1.01T + 23T^{2} \)
29 \( 1 - 1.01T + 29T^{2} \)
31 \( 1 + 4.74T + 31T^{2} \)
37 \( 1 - 10.7T + 37T^{2} \)
41 \( 1 - 5.43T + 41T^{2} \)
43 \( 1 + 11.1T + 43T^{2} \)
47 \( 1 - 4.23T + 47T^{2} \)
53 \( 1 - 9.84T + 53T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 - 5.11T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 2.02T + 71T^{2} \)
73 \( 1 - 5.11T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 11.8T + 83T^{2} \)
89 \( 1 + 9.84T + 89T^{2} \)
97 \( 1 + 7.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44757110507443960519736963386, −6.81034540783600481844910416464, −6.05847974417825247414370593848, −5.63923072551832079692383085755, −5.10685040813553007781398668570, −4.44645349339399211178669762350, −3.51925593110544982509969057103, −2.66503392485324049057957048954, −2.25953573699197105633259428492, −1.31067211067296379370270793056, 1.31067211067296379370270793056, 2.25953573699197105633259428492, 2.66503392485324049057957048954, 3.51925593110544982509969057103, 4.44645349339399211178669762350, 5.10685040813553007781398668570, 5.63923072551832079692383085755, 6.05847974417825247414370593848, 6.81034540783600481844910416464, 7.44757110507443960519736963386

Graph of the $Z$-function along the critical line