Properties

Label 2-8379-1.1-c1-0-2
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.414·2-s − 1.82·4-s − 1.82·5-s + 1.58·8-s + 0.757·10-s − 1.82·11-s − 2.82·13-s + 3·16-s − 7.65·17-s − 19-s + 3.34·20-s + 0.757·22-s − 3.82·23-s − 1.65·25-s + 1.17·26-s − 0.828·29-s − 8.82·31-s − 4.41·32-s + 3.17·34-s + 6.82·37-s + 0.414·38-s − 2.89·40-s + 3.65·41-s − 1.34·43-s + 3.34·44-s + 1.58·46-s − 11.8·47-s + ⋯
L(s)  = 1  − 0.292·2-s − 0.914·4-s − 0.817·5-s + 0.560·8-s + 0.239·10-s − 0.551·11-s − 0.784·13-s + 0.750·16-s − 1.85·17-s − 0.229·19-s + 0.747·20-s + 0.161·22-s − 0.798·23-s − 0.331·25-s + 0.229·26-s − 0.153·29-s − 1.58·31-s − 0.780·32-s + 0.543·34-s + 1.12·37-s + 0.0671·38-s − 0.458·40-s + 0.571·41-s − 0.204·43-s + 0.503·44-s + 0.233·46-s − 1.72·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.04142373873\)
\(L(\frac12)\) \(\approx\) \(0.04142373873\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + 0.414T + 2T^{2} \)
5 \( 1 + 1.82T + 5T^{2} \)
11 \( 1 + 1.82T + 11T^{2} \)
13 \( 1 + 2.82T + 13T^{2} \)
17 \( 1 + 7.65T + 17T^{2} \)
23 \( 1 + 3.82T + 23T^{2} \)
29 \( 1 + 0.828T + 29T^{2} \)
31 \( 1 + 8.82T + 31T^{2} \)
37 \( 1 - 6.82T + 37T^{2} \)
41 \( 1 - 3.65T + 41T^{2} \)
43 \( 1 + 1.34T + 43T^{2} \)
47 \( 1 + 11.8T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 + 5.17T + 59T^{2} \)
61 \( 1 + 3.34T + 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 + 15.6T + 71T^{2} \)
73 \( 1 - 12.3T + 73T^{2} \)
79 \( 1 - 13.6T + 79T^{2} \)
83 \( 1 + 9.82T + 83T^{2} \)
89 \( 1 + 5.17T + 89T^{2} \)
97 \( 1 - 11.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83263779532065215188139260766, −7.39186616028546697067545586928, −6.49441932491779124870811787795, −5.63826504828734904478674258120, −4.79828078333765794003161177689, −4.32325371252366613096075432847, −3.70221403746767035556992547579, −2.63082680657280336023198856740, −1.70140781380202816137512596075, −0.10175573901711212033374417786, 0.10175573901711212033374417786, 1.70140781380202816137512596075, 2.63082680657280336023198856740, 3.70221403746767035556992547579, 4.32325371252366613096075432847, 4.79828078333765794003161177689, 5.63826504828734904478674258120, 6.49441932491779124870811787795, 7.39186616028546697067545586928, 7.83263779532065215188139260766

Graph of the $Z$-function along the critical line