Properties

Label 2-8379-1.1-c1-0-186
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s + 3.82·4-s + 5-s + 4.41·8-s + 2.41·10-s + 0.414·11-s + 2.24·13-s + 2.99·16-s − 4·17-s + 19-s + 3.82·20-s + 0.999·22-s + 5.58·23-s − 4·25-s + 5.41·26-s + 6.58·29-s + 6.24·31-s − 1.58·32-s − 9.65·34-s + 9.07·37-s + 2.41·38-s + 4.41·40-s − 3.17·41-s + 8.07·43-s + 1.58·44-s + 13.4·46-s − 4.41·47-s + ⋯
L(s)  = 1  + 1.70·2-s + 1.91·4-s + 0.447·5-s + 1.56·8-s + 0.763·10-s + 0.124·11-s + 0.621·13-s + 0.749·16-s − 0.970·17-s + 0.229·19-s + 0.856·20-s + 0.213·22-s + 1.16·23-s − 0.800·25-s + 1.06·26-s + 1.22·29-s + 1.12·31-s − 0.280·32-s − 1.65·34-s + 1.49·37-s + 0.391·38-s + 0.697·40-s − 0.495·41-s + 1.23·43-s + 0.239·44-s + 1.98·46-s − 0.643·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.158163147\)
\(L(\frac12)\) \(\approx\) \(7.158163147\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 2.41T + 2T^{2} \)
5 \( 1 - T + 5T^{2} \)
11 \( 1 - 0.414T + 11T^{2} \)
13 \( 1 - 2.24T + 13T^{2} \)
17 \( 1 + 4T + 17T^{2} \)
23 \( 1 - 5.58T + 23T^{2} \)
29 \( 1 - 6.58T + 29T^{2} \)
31 \( 1 - 6.24T + 31T^{2} \)
37 \( 1 - 9.07T + 37T^{2} \)
41 \( 1 + 3.17T + 41T^{2} \)
43 \( 1 - 8.07T + 43T^{2} \)
47 \( 1 + 4.41T + 47T^{2} \)
53 \( 1 - 4.24T + 53T^{2} \)
59 \( 1 - 6.82T + 59T^{2} \)
61 \( 1 + 11.8T + 61T^{2} \)
67 \( 1 - 1.17T + 67T^{2} \)
71 \( 1 - 14.2T + 71T^{2} \)
73 \( 1 + 15.1T + 73T^{2} \)
79 \( 1 - 1.41T + 79T^{2} \)
83 \( 1 - 9.24T + 83T^{2} \)
89 \( 1 + 11.4T + 89T^{2} \)
97 \( 1 - 3.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49500824789736660604985527017, −6.73040059535711733973809028427, −6.22993282204430689929273626205, −5.74250233009827087768408143642, −4.80593901626654231046243005465, −4.45419551497814991871024807533, −3.59471129435026268497584483393, −2.81435699176931005484273141129, −2.19846638818811275826015644718, −1.05568521557433465559119258008, 1.05568521557433465559119258008, 2.19846638818811275826015644718, 2.81435699176931005484273141129, 3.59471129435026268497584483393, 4.45419551497814991871024807533, 4.80593901626654231046243005465, 5.74250233009827087768408143642, 6.22993282204430689929273626205, 6.73040059535711733973809028427, 7.49500824789736660604985527017

Graph of the $Z$-function along the critical line