Properties

Label 2-8379-1.1-c1-0-165
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.74·2-s + 5.53·4-s − 2.53·5-s + 9.70·8-s − 6.95·10-s − 2.42·11-s + 0.421·13-s + 15.5·16-s + 6.53·17-s + 19-s − 14.0·20-s − 6.64·22-s + 1.57·23-s + 1.42·25-s + 1.15·26-s − 6.02·29-s − 3.48·31-s + 23.3·32-s + 17.9·34-s − 2.84·37-s + 2.74·38-s − 24.5·40-s + 8.42·41-s + 11.4·43-s − 13.4·44-s + 4.33·46-s + 8.02·47-s + ⋯
L(s)  = 1  + 1.94·2-s + 2.76·4-s − 1.13·5-s + 3.42·8-s − 2.19·10-s − 0.730·11-s + 0.116·13-s + 3.88·16-s + 1.58·17-s + 0.229·19-s − 3.13·20-s − 1.41·22-s + 0.329·23-s + 0.284·25-s + 0.226·26-s − 1.11·29-s − 0.626·31-s + 4.11·32-s + 3.07·34-s − 0.467·37-s + 0.445·38-s − 3.88·40-s + 1.31·41-s + 1.75·43-s − 2.02·44-s + 0.638·46-s + 1.17·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.833757621\)
\(L(\frac12)\) \(\approx\) \(6.833757621\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 2.74T + 2T^{2} \)
5 \( 1 + 2.53T + 5T^{2} \)
11 \( 1 + 2.42T + 11T^{2} \)
13 \( 1 - 0.421T + 13T^{2} \)
17 \( 1 - 6.53T + 17T^{2} \)
23 \( 1 - 1.57T + 23T^{2} \)
29 \( 1 + 6.02T + 29T^{2} \)
31 \( 1 + 3.48T + 31T^{2} \)
37 \( 1 + 2.84T + 37T^{2} \)
41 \( 1 - 8.42T + 41T^{2} \)
43 \( 1 - 11.4T + 43T^{2} \)
47 \( 1 - 8.02T + 47T^{2} \)
53 \( 1 - 10.8T + 53T^{2} \)
59 \( 1 - 14.1T + 59T^{2} \)
61 \( 1 + 6.84T + 61T^{2} \)
67 \( 1 + 9.91T + 67T^{2} \)
71 \( 1 - 13.3T + 71T^{2} \)
73 \( 1 + 7.06T + 73T^{2} \)
79 \( 1 - 14.1T + 79T^{2} \)
83 \( 1 - 2.11T + 83T^{2} \)
89 \( 1 + 9.71T + 89T^{2} \)
97 \( 1 - 4.97T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47708445251210595757311926966, −7.22876433159530373931656782767, −6.07754789763155342925578437157, −5.53066161224532061723825873260, −5.07226652089780549461773131078, −3.94508301422335832264238544030, −3.87502723598413478682115124487, −2.97071684773156950027225082560, −2.25630874526661134693189274598, −0.973361950100451716851109431226, 0.973361950100451716851109431226, 2.25630874526661134693189274598, 2.97071684773156950027225082560, 3.87502723598413478682115124487, 3.94508301422335832264238544030, 5.07226652089780549461773131078, 5.53066161224532061723825873260, 6.07754789763155342925578437157, 7.22876433159530373931656782767, 7.47708445251210595757311926966

Graph of the $Z$-function along the critical line