Properties

Label 2-8379-1.1-c1-0-130
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.751·2-s − 1.43·4-s + 4.26·5-s − 2.58·8-s + 3.20·10-s − 4.09·11-s + 2.18·13-s + 0.933·16-s + 0.590·17-s + 19-s − 6.12·20-s − 3.07·22-s + 4.36·23-s + 13.1·25-s + 1.64·26-s + 7.36·29-s − 4.51·31-s + 5.86·32-s + 0.443·34-s + 8.95·37-s + 0.751·38-s − 11.0·40-s − 2.17·41-s − 8.69·43-s + 5.88·44-s + 3.28·46-s − 11.8·47-s + ⋯
L(s)  = 1  + 0.531·2-s − 0.717·4-s + 1.90·5-s − 0.912·8-s + 1.01·10-s − 1.23·11-s + 0.606·13-s + 0.233·16-s + 0.143·17-s + 0.229·19-s − 1.36·20-s − 0.656·22-s + 0.911·23-s + 2.63·25-s + 0.322·26-s + 1.36·29-s − 0.811·31-s + 1.03·32-s + 0.0759·34-s + 1.47·37-s + 0.121·38-s − 1.74·40-s − 0.340·41-s − 1.32·43-s + 0.887·44-s + 0.483·46-s − 1.72·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.145502351\)
\(L(\frac12)\) \(\approx\) \(3.145502351\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 0.751T + 2T^{2} \)
5 \( 1 - 4.26T + 5T^{2} \)
11 \( 1 + 4.09T + 11T^{2} \)
13 \( 1 - 2.18T + 13T^{2} \)
17 \( 1 - 0.590T + 17T^{2} \)
23 \( 1 - 4.36T + 23T^{2} \)
29 \( 1 - 7.36T + 29T^{2} \)
31 \( 1 + 4.51T + 31T^{2} \)
37 \( 1 - 8.95T + 37T^{2} \)
41 \( 1 + 2.17T + 41T^{2} \)
43 \( 1 + 8.69T + 43T^{2} \)
47 \( 1 + 11.8T + 47T^{2} \)
53 \( 1 + 4.40T + 53T^{2} \)
59 \( 1 - 10.7T + 59T^{2} \)
61 \( 1 - 2.43T + 61T^{2} \)
67 \( 1 + 5.65T + 67T^{2} \)
71 \( 1 + 8.32T + 71T^{2} \)
73 \( 1 - 10.6T + 73T^{2} \)
79 \( 1 - 8.56T + 79T^{2} \)
83 \( 1 + 4.25T + 83T^{2} \)
89 \( 1 - 3.79T + 89T^{2} \)
97 \( 1 + 2.11T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.945566937369961987802599736359, −6.77527102693653678106616770638, −6.26224399251163397902259949126, −5.54503270858485914162207704358, −5.12294793692314386572821025923, −4.58490365123809317610550524870, −3.28776270247785876627683154656, −2.81706473932316440266081125007, −1.85386230058804575270697219773, −0.822986192185307711060082059759, 0.822986192185307711060082059759, 1.85386230058804575270697219773, 2.81706473932316440266081125007, 3.28776270247785876627683154656, 4.58490365123809317610550524870, 5.12294793692314386572821025923, 5.54503270858485914162207704358, 6.26224399251163397902259949126, 6.77527102693653678106616770638, 7.945566937369961987802599736359

Graph of the $Z$-function along the critical line