Properties

Label 2-8379-1.1-c1-0-128
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.27·2-s + 3.16·4-s + 1.72·5-s − 2.65·8-s − 3.91·10-s + 2.87·11-s + 1.56·13-s − 0.308·16-s + 5.43·17-s − 19-s + 5.45·20-s − 6.52·22-s + 6.09·23-s − 2.03·25-s − 3.55·26-s − 3.17·29-s + 1.03·31-s + 6.00·32-s − 12.3·34-s + 8.44·37-s + 2.27·38-s − 4.56·40-s + 10.4·41-s − 3.21·43-s + 9.09·44-s − 13.8·46-s − 5.50·47-s + ⋯
L(s)  = 1  − 1.60·2-s + 1.58·4-s + 0.770·5-s − 0.937·8-s − 1.23·10-s + 0.865·11-s + 0.434·13-s − 0.0770·16-s + 1.31·17-s − 0.229·19-s + 1.21·20-s − 1.39·22-s + 1.27·23-s − 0.406·25-s − 0.697·26-s − 0.589·29-s + 0.185·31-s + 1.06·32-s − 2.11·34-s + 1.38·37-s + 0.368·38-s − 0.721·40-s + 1.62·41-s − 0.491·43-s + 1.37·44-s − 2.04·46-s − 0.803·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.351824757\)
\(L(\frac12)\) \(\approx\) \(1.351824757\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + 2.27T + 2T^{2} \)
5 \( 1 - 1.72T + 5T^{2} \)
11 \( 1 - 2.87T + 11T^{2} \)
13 \( 1 - 1.56T + 13T^{2} \)
17 \( 1 - 5.43T + 17T^{2} \)
23 \( 1 - 6.09T + 23T^{2} \)
29 \( 1 + 3.17T + 29T^{2} \)
31 \( 1 - 1.03T + 31T^{2} \)
37 \( 1 - 8.44T + 37T^{2} \)
41 \( 1 - 10.4T + 41T^{2} \)
43 \( 1 + 3.21T + 43T^{2} \)
47 \( 1 + 5.50T + 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 + 6.21T + 59T^{2} \)
61 \( 1 + 9.76T + 61T^{2} \)
67 \( 1 + 2.55T + 67T^{2} \)
71 \( 1 + 12.3T + 71T^{2} \)
73 \( 1 - 10.5T + 73T^{2} \)
79 \( 1 - 12.9T + 79T^{2} \)
83 \( 1 - 5.38T + 83T^{2} \)
89 \( 1 - 7.45T + 89T^{2} \)
97 \( 1 - 2.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73575679926657310700198533123, −7.47942619499719180570783328701, −6.43592776891434409768082064997, −6.12023335881199160314518021926, −5.21033507514426782138601590008, −4.19235400317573440501035783232, −3.21192769630445904974836759766, −2.29216600714286218094399615477, −1.42030586738914079603968062221, −0.820073071840093394200506315724, 0.820073071840093394200506315724, 1.42030586738914079603968062221, 2.29216600714286218094399615477, 3.21192769630445904974836759766, 4.19235400317573440501035783232, 5.21033507514426782138601590008, 6.12023335881199160314518021926, 6.43592776891434409768082064997, 7.47942619499719180570783328701, 7.73575679926657310700198533123

Graph of the $Z$-function along the critical line