L(s) = 1 | − 2.23·2-s − 3-s + 3.00·4-s − 3.23·5-s + 2.23·6-s + 1.23·7-s − 2.23·8-s + 9-s + 7.23·10-s − 3.00·12-s − 4.47·13-s − 2.76·14-s + 3.23·15-s − 0.999·16-s + 7.23·17-s − 2.23·18-s − 2.76·19-s − 9.70·20-s − 1.23·21-s + 23-s + 2.23·24-s + 5.47·25-s + 10.0·26-s − 27-s + 3.70·28-s + 4.47·29-s − 7.23·30-s + ⋯ |
L(s) = 1 | − 1.58·2-s − 0.577·3-s + 1.50·4-s − 1.44·5-s + 0.912·6-s + 0.467·7-s − 0.790·8-s + 0.333·9-s + 2.28·10-s − 0.866·12-s − 1.24·13-s − 0.738·14-s + 0.835·15-s − 0.249·16-s + 1.75·17-s − 0.527·18-s − 0.634·19-s − 2.17·20-s − 0.269·21-s + 0.208·23-s + 0.456·24-s + 1.09·25-s + 1.96·26-s − 0.192·27-s + 0.700·28-s + 0.830·29-s − 1.32·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8349 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 11 | \( 1 \) |
| 23 | \( 1 - T \) |
good | 2 | \( 1 + 2.23T + 2T^{2} \) |
| 5 | \( 1 + 3.23T + 5T^{2} \) |
| 7 | \( 1 - 1.23T + 7T^{2} \) |
| 13 | \( 1 + 4.47T + 13T^{2} \) |
| 17 | \( 1 - 7.23T + 17T^{2} \) |
| 19 | \( 1 + 2.76T + 19T^{2} \) |
| 29 | \( 1 - 4.47T + 29T^{2} \) |
| 31 | \( 1 - 2.47T + 31T^{2} \) |
| 37 | \( 1 + 4.47T + 37T^{2} \) |
| 41 | \( 1 + 6.94T + 41T^{2} \) |
| 43 | \( 1 + 7.70T + 43T^{2} \) |
| 47 | \( 1 + 4T + 47T^{2} \) |
| 53 | \( 1 + 0.763T + 53T^{2} \) |
| 59 | \( 1 - 12.9T + 59T^{2} \) |
| 61 | \( 1 - 4.47T + 61T^{2} \) |
| 67 | \( 1 - 5.23T + 67T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 - 10.9T + 73T^{2} \) |
| 79 | \( 1 - 3.70T + 79T^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 - 3.23T + 89T^{2} \) |
| 97 | \( 1 + 0.472T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.63436152986578918415718280521, −7.04190023959609658635490568859, −6.54387192865241842667649749611, −5.24145804912378940565790313594, −4.79615829444638120225415238612, −3.83380231487870749457107606245, −2.93559839418215937160557230089, −1.79816907198708919813626148859, −0.836760849777885838778444324653, 0,
0.836760849777885838778444324653, 1.79816907198708919813626148859, 2.93559839418215937160557230089, 3.83380231487870749457107606245, 4.79615829444638120225415238612, 5.24145804912378940565790313594, 6.54387192865241842667649749611, 7.04190023959609658635490568859, 7.63436152986578918415718280521