L(s) = 1 | + (0.866 − 1.5i)3-s + 3.46i·5-s + (−2.59 + 1.5i)7-s + (−4.33 − 2.5i)11-s + (1 − 3.46i)13-s + (5.19 + 2.99i)15-s + (3.5 + 6.06i)17-s + (−4.33 + 2.5i)19-s + 5.19i·21-s + (−2.59 + 4.5i)23-s − 6.99·25-s + 5.19·27-s + (−2.5 + 4.33i)29-s + 2i·31-s + (−7.5 + 4.33i)33-s + ⋯ |
L(s) = 1 | + (0.499 − 0.866i)3-s + 1.54i·5-s + (−0.981 + 0.566i)7-s + (−1.30 − 0.753i)11-s + (0.277 − 0.960i)13-s + (1.34 + 0.774i)15-s + (0.848 + 1.47i)17-s + (−0.993 + 0.573i)19-s + 1.13i·21-s + (−0.541 + 0.938i)23-s − 1.39·25-s + 1.00·27-s + (−0.464 + 0.804i)29-s + 0.359i·31-s + (−1.30 + 0.753i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.644801 + 0.834766i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.644801 + 0.834766i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
good | 3 | \( 1 + (-0.866 + 1.5i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 3.46iT - 5T^{2} \) |
| 7 | \( 1 + (2.59 - 1.5i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (4.33 + 2.5i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.5 - 6.06i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.33 - 2.5i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.59 - 4.5i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.5 - 4.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 + (4.5 + 2.59i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 + 0.866i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.59 - 4.5i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 4iT - 47T^{2} \) |
| 53 | \( 1 + 4T + 53T^{2} \) |
| 59 | \( 1 + (-6.06 + 3.5i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 2.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.59 + 1.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.06 + 3.5i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 3.46iT - 73T^{2} \) |
| 79 | \( 1 - 3.46T + 79T^{2} \) |
| 83 | \( 1 - 14iT - 83T^{2} \) |
| 89 | \( 1 + (-1.5 - 0.866i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.5 + 4.33i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60195774873160405284938116000, −9.825858627751316530929121688513, −8.376585893064068134046467771425, −7.943818392258182514897943923733, −7.08719998194854200612340886851, −6.12544295282820725141904832160, −5.64951691037786993164926234045, −3.46701889614255901547158827532, −3.03507686231489644484628742773, −1.97046832394155394436606828951,
0.45712327582775890214975589543, 2.37212028449560547990958365689, 3.73383518618122464812277916686, 4.53977221518602306500339049214, 5.14918830804095099354067444517, 6.51816711380605981272777082346, 7.52750766774822474121386055996, 8.565284769052063164123669039898, 9.207234192835200423614294617761, 9.877998204908862386110032871315