L(s) = 1 | + (1 − 1.73i)3-s + 1.73i·5-s + (−0.499 − 0.866i)9-s + (2.5 + 2.59i)13-s + (2.99 + 1.73i)15-s + (1.5 + 2.59i)17-s + (3 − 1.73i)19-s + (3 − 5.19i)23-s + 2.00·25-s + 4.00·27-s + (1.5 − 2.59i)29-s + 3.46i·31-s + (−7.5 − 4.33i)37-s + (7 − 1.73i)39-s + (−4.5 − 2.59i)41-s + ⋯ |
L(s) = 1 | + (0.577 − 0.999i)3-s + 0.774i·5-s + (−0.166 − 0.288i)9-s + (0.693 + 0.720i)13-s + (0.774 + 0.447i)15-s + (0.363 + 0.630i)17-s + (0.688 − 0.397i)19-s + (0.625 − 1.08i)23-s + 0.400·25-s + 0.769·27-s + (0.278 − 0.482i)29-s + 0.622i·31-s + (−1.23 − 0.711i)37-s + (1.12 − 0.277i)39-s + (−0.702 − 0.405i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00259 - 0.270180i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00259 - 0.270180i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-2.5 - 2.59i)T \) |
good | 3 | \( 1 + (-1 + 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 1.73iT - 5T^{2} \) |
| 7 | \( 1 + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 1.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 + 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (7.5 + 4.33i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 + 2.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 - 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.46iT - 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (6 - 3.46i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3 + 1.73i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 + 1.73i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.73iT - 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 + 13.8iT - 83T^{2} \) |
| 89 | \( 1 + (6 + 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6 + 3.46i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35156224761615169015313377590, −9.081748904585127415739442859446, −8.451177385438783730373633503685, −7.48945524821787918253428785385, −6.84870111365291030756401628935, −6.16346685631927636428370955012, −4.77595904803463638852110189098, −3.44600387721085178412118898592, −2.52519132039434657488003662700, −1.34757788576870210394749588045,
1.19342195581952098885891454876, 3.06558804326536764668254183560, 3.73821556874204723903753598097, 4.92680899819577653089241091085, 5.48585094412207632847449169395, 6.87255681828692222734207562669, 7.981178807168000502414143638320, 8.719798006643904438057059673349, 9.393142522121543241355094837957, 10.05947621800990910940676282125