L(s) = 1 | + (0.866 + 1.5i)3-s − 3.46i·5-s + (−2.59 − 1.5i)7-s + (−4.33 + 2.5i)11-s + (1 + 3.46i)13-s + (5.19 − 2.99i)15-s + (3.5 − 6.06i)17-s + (−4.33 − 2.5i)19-s − 5.19i·21-s + (−2.59 − 4.5i)23-s − 6.99·25-s + 5.19·27-s + (−2.5 − 4.33i)29-s − 2i·31-s + (−7.5 − 4.33i)33-s + ⋯ |
L(s) = 1 | + (0.499 + 0.866i)3-s − 1.54i·5-s + (−0.981 − 0.566i)7-s + (−1.30 + 0.753i)11-s + (0.277 + 0.960i)13-s + (1.34 − 0.774i)15-s + (0.848 − 1.47i)17-s + (−0.993 − 0.573i)19-s − 1.13i·21-s + (−0.541 − 0.938i)23-s − 1.39·25-s + 1.00·27-s + (−0.464 − 0.804i)29-s − 0.359i·31-s + (−1.30 − 0.753i)33-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(−0.252+0.967i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(−0.252+0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
−0.252+0.967i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), −0.252+0.967i)
|
Particular Values
L(1) |
≈ |
0.644801−0.834766i |
L(21) |
≈ |
0.644801−0.834766i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−1−3.46i)T |
good | 3 | 1+(−0.866−1.5i)T+(−1.5+2.59i)T2 |
| 5 | 1+3.46iT−5T2 |
| 7 | 1+(2.59+1.5i)T+(3.5+6.06i)T2 |
| 11 | 1+(4.33−2.5i)T+(5.5−9.52i)T2 |
| 17 | 1+(−3.5+6.06i)T+(−8.5−14.7i)T2 |
| 19 | 1+(4.33+2.5i)T+(9.5+16.4i)T2 |
| 23 | 1+(2.59+4.5i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.5+4.33i)T+(−14.5+25.1i)T2 |
| 31 | 1+2iT−31T2 |
| 37 | 1+(4.5−2.59i)T+(18.5−32.0i)T2 |
| 41 | 1+(1.5−0.866i)T+(20.5−35.5i)T2 |
| 43 | 1+(−2.59+4.5i)T+(−21.5−37.2i)T2 |
| 47 | 1+4iT−47T2 |
| 53 | 1+4T+53T2 |
| 59 | 1+(−6.06−3.5i)T+(29.5+51.0i)T2 |
| 61 | 1+(−1.5+2.59i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.59−1.5i)T+(33.5−58.0i)T2 |
| 71 | 1+(−6.06−3.5i)T+(35.5+61.4i)T2 |
| 73 | 1−3.46iT−73T2 |
| 79 | 1−3.46T+79T2 |
| 83 | 1+14iT−83T2 |
| 89 | 1+(−1.5+0.866i)T+(44.5−77.0i)T2 |
| 97 | 1+(−7.5−4.33i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.877998204908862386110032871315, −9.207234192835200423614294617761, −8.565284769052063164123669039898, −7.52750766774822474121386055996, −6.51816711380605981272777082346, −5.14918830804095099354067444517, −4.53977221518602306500339049214, −3.73383518618122464812277916686, −2.37212028449560547990958365689, −0.45712327582775890214975589543,
1.97046832394155394436606828951, 3.03507686231489644484628742773, 3.46701889614255901547158827532, 5.64951691037786993164926234045, 6.12544295282820725141904832160, 7.08719998194854200612340886851, 7.943818392258182514897943923733, 8.376585893064068134046467771425, 9.825858627751316530929121688513, 10.60195774873160405284938116000