L(s) = 1 | + (1 + 1.73i)3-s − 1.73i·5-s + (−0.499 + 0.866i)9-s + (2.5 − 2.59i)13-s + (2.99 − 1.73i)15-s + (1.5 − 2.59i)17-s + (3 + 1.73i)19-s + (3 + 5.19i)23-s + 2.00·25-s + 4.00·27-s + (1.5 + 2.59i)29-s − 3.46i·31-s + (−7.5 + 4.33i)37-s + (7 + 1.73i)39-s + (−4.5 + 2.59i)41-s + ⋯ |
L(s) = 1 | + (0.577 + 0.999i)3-s − 0.774i·5-s + (−0.166 + 0.288i)9-s + (0.693 − 0.720i)13-s + (0.774 − 0.447i)15-s + (0.363 − 0.630i)17-s + (0.688 + 0.397i)19-s + (0.625 + 1.08i)23-s + 0.400·25-s + 0.769·27-s + (0.278 + 0.482i)29-s − 0.622i·31-s + (−1.23 + 0.711i)37-s + (1.12 + 0.277i)39-s + (−0.702 + 0.405i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00259 + 0.270180i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00259 + 0.270180i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-2.5 + 2.59i)T \) |
good | 3 | \( 1 + (-1 - 1.73i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 1.73iT - 5T^{2} \) |
| 7 | \( 1 + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 - 1.73i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (7.5 - 4.33i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 - 2.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 + 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (6 + 3.46i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3 - 1.73i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 - 1.73i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 13.8iT - 83T^{2} \) |
| 89 | \( 1 + (6 - 3.46i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6 - 3.46i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05947621800990910940676282125, −9.393142522121543241355094837957, −8.719798006643904438057059673349, −7.981178807168000502414143638320, −6.87255681828692222734207562669, −5.48585094412207632847449169395, −4.92680899819577653089241091085, −3.73821556874204723903753598097, −3.06558804326536764668254183560, −1.19342195581952098885891454876,
1.34757788576870210394749588045, 2.52519132039434657488003662700, 3.44600387721085178412118898592, 4.77595904803463638852110189098, 6.16346685631927636428370955012, 6.84870111365291030756401628935, 7.48945524821787918253428785385, 8.451177385438783730373633503685, 9.081748904585127415739442859446, 10.35156224761615169015313377590