Properties

Label 2-832-1.1-c1-0-20
Degree $2$
Conductor $832$
Sign $-1$
Analytic cond. $6.64355$
Root an. cond. $2.57750$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 3·7-s − 2·9-s + 2·11-s − 13-s − 15-s − 3·17-s + 2·19-s − 3·21-s − 4·23-s − 4·25-s − 5·27-s − 2·29-s − 4·31-s + 2·33-s + 3·35-s − 5·37-s − 39-s − 12·41-s + 7·43-s + 2·45-s + 9·47-s + 2·49-s − 3·51-s − 4·53-s − 2·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.13·7-s − 2/3·9-s + 0.603·11-s − 0.277·13-s − 0.258·15-s − 0.727·17-s + 0.458·19-s − 0.654·21-s − 0.834·23-s − 4/5·25-s − 0.962·27-s − 0.371·29-s − 0.718·31-s + 0.348·33-s + 0.507·35-s − 0.821·37-s − 0.160·39-s − 1.87·41-s + 1.06·43-s + 0.298·45-s + 1.31·47-s + 2/7·49-s − 0.420·51-s − 0.549·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $-1$
Analytic conductor: \(6.64355\)
Root analytic conductor: \(2.57750\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 832,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.569558118882219919166860095172, −9.047844245850055328663467790681, −8.164073243404726087458874283729, −7.24590392626276711089268101144, −6.38214982845086797991935769549, −5.44381521424819262860879893345, −3.98201822306205170540476776306, −3.35119415716675821853458300620, −2.16854340668365184688633714193, 0, 2.16854340668365184688633714193, 3.35119415716675821853458300620, 3.98201822306205170540476776306, 5.44381521424819262860879893345, 6.38214982845086797991935769549, 7.24590392626276711089268101144, 8.164073243404726087458874283729, 9.047844245850055328663467790681, 9.569558118882219919166860095172

Graph of the $Z$-function along the critical line