L(s) = 1 | + 3-s − 5-s − 3·7-s − 2·9-s + 2·11-s − 13-s − 15-s − 3·17-s + 2·19-s − 3·21-s − 4·23-s − 4·25-s − 5·27-s − 2·29-s − 4·31-s + 2·33-s + 3·35-s − 5·37-s − 39-s − 12·41-s + 7·43-s + 2·45-s + 9·47-s + 2·49-s − 3·51-s − 4·53-s − 2·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s − 1.13·7-s − 2/3·9-s + 0.603·11-s − 0.277·13-s − 0.258·15-s − 0.727·17-s + 0.458·19-s − 0.654·21-s − 0.834·23-s − 4/5·25-s − 0.962·27-s − 0.371·29-s − 0.718·31-s + 0.348·33-s + 0.507·35-s − 0.821·37-s − 0.160·39-s − 1.87·41-s + 1.06·43-s + 0.298·45-s + 1.31·47-s + 2/7·49-s − 0.420·51-s − 0.549·53-s − 0.269·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 - T + p T^{2} \) |
| 5 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 + 3 T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 - 2 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 5 T + p T^{2} \) |
| 41 | \( 1 + 12 T + p T^{2} \) |
| 43 | \( 1 - 7 T + p T^{2} \) |
| 47 | \( 1 - 9 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 - 4 T + p T^{2} \) |
| 67 | \( 1 + 10 T + p T^{2} \) |
| 71 | \( 1 - 15 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 - 2 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.569558118882219919166860095172, −9.047844245850055328663467790681, −8.164073243404726087458874283729, −7.24590392626276711089268101144, −6.38214982845086797991935769549, −5.44381521424819262860879893345, −3.98201822306205170540476776306, −3.35119415716675821853458300620, −2.16854340668365184688633714193, 0,
2.16854340668365184688633714193, 3.35119415716675821853458300620, 3.98201822306205170540476776306, 5.44381521424819262860879893345, 6.38214982845086797991935769549, 7.24590392626276711089268101144, 8.164073243404726087458874283729, 9.047844245850055328663467790681, 9.569558118882219919166860095172