Properties

Label 2-8280-1.1-c1-0-45
Degree $2$
Conductor $8280$
Sign $1$
Analytic cond. $66.1161$
Root an. cond. $8.13118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 3·7-s + 6·11-s − 2·13-s − 3·17-s − 6·19-s + 23-s + 25-s + 9·29-s − 3·31-s + 3·35-s + 3·37-s + 3·41-s − 4·47-s + 2·49-s + 9·53-s + 6·55-s + 3·59-s − 8·61-s − 2·65-s + 3·67-s + 9·71-s + 6·73-s + 18·77-s − 4·79-s − 3·83-s − 3·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.13·7-s + 1.80·11-s − 0.554·13-s − 0.727·17-s − 1.37·19-s + 0.208·23-s + 1/5·25-s + 1.67·29-s − 0.538·31-s + 0.507·35-s + 0.493·37-s + 0.468·41-s − 0.583·47-s + 2/7·49-s + 1.23·53-s + 0.809·55-s + 0.390·59-s − 1.02·61-s − 0.248·65-s + 0.366·67-s + 1.06·71-s + 0.702·73-s + 2.05·77-s − 0.450·79-s − 0.329·83-s − 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8280\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(66.1161\)
Root analytic conductor: \(8.13118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.926518441\)
\(L(\frac12)\) \(\approx\) \(2.926518441\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87880322153703235580423716239, −6.93593278211091926304418793179, −6.51913664445892458637730073172, −5.83616943972171789143694628040, −4.74213422371018555798400799261, −4.49862202267222825947986074707, −3.62403715120826288083600251024, −2.41137123841173901822357596523, −1.80866430095552834503618232943, −0.882408719248005362401823484559, 0.882408719248005362401823484559, 1.80866430095552834503618232943, 2.41137123841173901822357596523, 3.62403715120826288083600251024, 4.49862202267222825947986074707, 4.74213422371018555798400799261, 5.83616943972171789143694628040, 6.51913664445892458637730073172, 6.93593278211091926304418793179, 7.87880322153703235580423716239

Graph of the $Z$-function along the critical line