L(s) = 1 | + 5-s − 3·7-s − 2.31·11-s + 4.31·13-s − 3.31·17-s − 8.31·19-s − 23-s + 25-s + 7.31·29-s + 3.63·31-s − 3·35-s − 1.63·37-s + 3.31·41-s − 10.6·43-s + 8.94·47-s + 2·49-s − 9.94·53-s − 2.31·55-s − 7.94·59-s + 10.3·61-s + 4.31·65-s + 15.6·67-s − 11.9·71-s + 8.31·73-s + 6.94·77-s + 1.31·83-s − 3.31·85-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.13·7-s − 0.698·11-s + 1.19·13-s − 0.804·17-s − 1.90·19-s − 0.208·23-s + 0.200·25-s + 1.35·29-s + 0.652·31-s − 0.507·35-s − 0.268·37-s + 0.517·41-s − 1.62·43-s + 1.30·47-s + 0.285·49-s − 1.36·53-s − 0.312·55-s − 1.03·59-s + 1.32·61-s + 0.535·65-s + 1.90·67-s − 1.41·71-s + 0.973·73-s + 0.792·77-s + 0.144·83-s − 0.359·85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.404879672\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.404879672\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 23 | \( 1 + T \) |
good | 7 | \( 1 + 3T + 7T^{2} \) |
| 11 | \( 1 + 2.31T + 11T^{2} \) |
| 13 | \( 1 - 4.31T + 13T^{2} \) |
| 17 | \( 1 + 3.31T + 17T^{2} \) |
| 19 | \( 1 + 8.31T + 19T^{2} \) |
| 29 | \( 1 - 7.31T + 29T^{2} \) |
| 31 | \( 1 - 3.63T + 31T^{2} \) |
| 37 | \( 1 + 1.63T + 37T^{2} \) |
| 41 | \( 1 - 3.31T + 41T^{2} \) |
| 43 | \( 1 + 10.6T + 43T^{2} \) |
| 47 | \( 1 - 8.94T + 47T^{2} \) |
| 53 | \( 1 + 9.94T + 53T^{2} \) |
| 59 | \( 1 + 7.94T + 59T^{2} \) |
| 61 | \( 1 - 10.3T + 61T^{2} \) |
| 67 | \( 1 - 15.6T + 67T^{2} \) |
| 71 | \( 1 + 11.9T + 71T^{2} \) |
| 73 | \( 1 - 8.31T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 1.31T + 83T^{2} \) |
| 89 | \( 1 - 4.63T + 89T^{2} \) |
| 97 | \( 1 - 12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.959358531067944364781345301542, −6.78887722140286768192474616757, −6.41572577214483327726150737084, −6.01934121777450678101501454472, −4.98275328807974791043166145767, −4.26173305534020728072861341465, −3.44254490466245373116902969639, −2.65183598838576303059051144615, −1.89339931092958265148839007546, −0.56004339982631619557095630344,
0.56004339982631619557095630344, 1.89339931092958265148839007546, 2.65183598838576303059051144615, 3.44254490466245373116902969639, 4.26173305534020728072861341465, 4.98275328807974791043166145767, 6.01934121777450678101501454472, 6.41572577214483327726150737084, 6.78887722140286768192474616757, 7.959358531067944364781345301542