| L(s) = 1 | + (0.766 + 0.642i)2-s + (−0.173 + 0.984i)3-s + (0.173 + 0.984i)4-s + (−0.766 + 0.642i)6-s + (−0.500 + 0.866i)8-s + (−0.939 − 0.342i)9-s − 12-s + (0.173 + 0.300i)13-s + (−0.939 + 0.342i)16-s + (−0.499 − 0.866i)18-s + (0.5 + 0.866i)23-s + (−0.766 − 0.642i)24-s + (0.5 − 0.866i)25-s + (−0.0603 + 0.342i)26-s + (0.5 − 0.866i)27-s + ⋯ |
| L(s) = 1 | + (0.766 + 0.642i)2-s + (−0.173 + 0.984i)3-s + (0.173 + 0.984i)4-s + (−0.766 + 0.642i)6-s + (−0.500 + 0.866i)8-s + (−0.939 − 0.342i)9-s − 12-s + (0.173 + 0.300i)13-s + (−0.939 + 0.342i)16-s + (−0.499 − 0.866i)18-s + (0.5 + 0.866i)23-s + (−0.766 − 0.642i)24-s + (0.5 − 0.866i)25-s + (−0.0603 + 0.342i)26-s + (0.5 − 0.866i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.317044340\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.317044340\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.766 - 0.642i)T \) |
| 3 | \( 1 + (0.173 - 0.984i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| good | 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 29 | \( 1 + (1.11 + 0.642i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-1.11 + 0.642i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.592 - 0.342i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + 1.53T + T^{2} \) |
| 73 | \( 1 - 1.53T + T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84301627630590627247247989004, −9.838400708371403124811970309752, −8.963464534041243951576987964916, −8.201040649596186616261522919641, −7.14800237200510219181085035981, −6.14954617675612973932550197552, −5.41700798224171864317942073396, −4.46934166250668053981089914056, −3.72909867107743577278975519155, −2.60402736017968118868529168791,
1.20988694900037861410300603997, 2.47828026962149973078690084363, 3.46048270903789115890519751619, 4.84493150939720709906537663411, 5.63939165119995228844032611275, 6.56888770391099370359994575443, 7.27768092090977965760304046040, 8.459621958688360666234568582793, 9.320488767935185855629589906490, 10.53030228219018871395380467955