Properties

Label 2-828-1.1-c1-0-3
Degree $2$
Conductor $828$
Sign $1$
Analytic cond. $6.61161$
Root an. cond. $2.57130$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.16·5-s + 5.16·7-s + 4·13-s − 7.16·17-s − 1.16·19-s + 23-s + 5.00·25-s − 8.32·29-s − 6.32·31-s + 16.3·35-s − 8.32·37-s + 2·41-s + 1.16·43-s − 0.324·47-s + 19.6·49-s − 5.48·53-s + 8.32·59-s + 0.324·61-s + 12.6·65-s + 1.16·67-s − 14.6·73-s + 13.1·79-s + 4·83-s − 22.6·85-s + 9.48·89-s + 20.6·91-s − 3.67·95-s + ⋯
L(s)  = 1  + 1.41·5-s + 1.95·7-s + 1.10·13-s − 1.73·17-s − 0.266·19-s + 0.208·23-s + 1.00·25-s − 1.54·29-s − 1.13·31-s + 2.75·35-s − 1.36·37-s + 0.312·41-s + 0.177·43-s − 0.0473·47-s + 2.80·49-s − 0.753·53-s + 1.08·59-s + 0.0415·61-s + 1.56·65-s + 0.141·67-s − 1.71·73-s + 1.48·79-s + 0.439·83-s − 2.45·85-s + 1.00·89-s + 2.16·91-s − 0.377·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(828\)    =    \(2^{2} \cdot 3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(6.61161\)
Root analytic conductor: \(2.57130\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 828,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.366683913\)
\(L(\frac12)\) \(\approx\) \(2.366683913\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 3.16T + 5T^{2} \)
7 \( 1 - 5.16T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 + 7.16T + 17T^{2} \)
19 \( 1 + 1.16T + 19T^{2} \)
29 \( 1 + 8.32T + 29T^{2} \)
31 \( 1 + 6.32T + 31T^{2} \)
37 \( 1 + 8.32T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 1.16T + 43T^{2} \)
47 \( 1 + 0.324T + 47T^{2} \)
53 \( 1 + 5.48T + 53T^{2} \)
59 \( 1 - 8.32T + 59T^{2} \)
61 \( 1 - 0.324T + 61T^{2} \)
67 \( 1 - 1.16T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 14.6T + 73T^{2} \)
79 \( 1 - 13.1T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 - 9.48T + 89T^{2} \)
97 \( 1 + 3.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43613806945451780802420112718, −9.062606422950711948310847894300, −8.814210656265356122233352271984, −7.72743195267520578806323410302, −6.67419979706049240262632824264, −5.69509868360448891261747734117, −5.03167345791127829130952304270, −3.97367952161048494125997948309, −2.14444362300537962490348661758, −1.61119223303548843822803153001, 1.61119223303548843822803153001, 2.14444362300537962490348661758, 3.97367952161048494125997948309, 5.03167345791127829130952304270, 5.69509868360448891261747734117, 6.67419979706049240262632824264, 7.72743195267520578806323410302, 8.814210656265356122233352271984, 9.062606422950711948310847894300, 10.43613806945451780802420112718

Graph of the $Z$-function along the critical line