L(s) = 1 | + (−0.587 − 0.190i)2-s + (0.587 + 0.809i)3-s + (−1.30 − 0.951i)4-s + (−0.190 − 0.587i)6-s + (1.76 − 2.42i)7-s + (1.31 + 1.80i)8-s + (−0.309 + 0.951i)9-s + (1.69 + 2.85i)11-s − 1.61i·12-s + (−1.67 − 0.545i)13-s + (−1.5 + 1.08i)14-s + (0.572 + 1.76i)16-s + (−1.53 + 0.5i)17-s + (0.363 − 0.5i)18-s + (4.73 − 3.44i)19-s + ⋯ |
L(s) = 1 | + (−0.415 − 0.135i)2-s + (0.339 + 0.467i)3-s + (−0.654 − 0.475i)4-s + (−0.0779 − 0.239i)6-s + (0.666 − 0.917i)7-s + (0.464 + 0.639i)8-s + (−0.103 + 0.317i)9-s + (0.509 + 0.860i)11-s − 0.467i·12-s + (−0.465 − 0.151i)13-s + (−0.400 + 0.291i)14-s + (0.143 + 0.440i)16-s + (−0.373 + 0.121i)17-s + (0.0856 − 0.117i)18-s + (1.08 − 0.789i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 + 0.489i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 + 0.489i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25113 - 0.326938i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25113 - 0.326938i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.587 - 0.809i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-1.69 - 2.85i)T \) |
good | 2 | \( 1 + (0.587 + 0.190i)T + (1.61 + 1.17i)T^{2} \) |
| 7 | \( 1 + (-1.76 + 2.42i)T + (-2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.67 + 0.545i)T + (10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (1.53 - 0.5i)T + (13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-4.73 + 3.44i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 3.47iT - 23T^{2} \) |
| 29 | \( 1 + (-3.61 - 2.62i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.881 + 2.71i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-0.138 + 0.190i)T + (-11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-9.66 + 7.02i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 6.23iT - 43T^{2} \) |
| 47 | \( 1 + (0.951 + 1.30i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-9.14 - 2.97i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-8.35 - 6.06i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-2.42 - 7.46i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 9.56iT - 67T^{2} \) |
| 71 | \( 1 + (1.71 + 5.29i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-1.90 + 2.61i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (2.92 - 9.00i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-0.673 + 0.218i)T + (67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 0.527T + 89T^{2} \) |
| 97 | \( 1 + (13.3 + 4.33i)T + (78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16905597248941998795170576567, −9.322434433794114789758188953752, −8.714147976586857982627026732927, −7.68127696626706058268937263069, −6.98488422986225912150042186529, −5.46750633988209657620780599131, −4.60425772608453408754720450499, −4.03664890969670483880164452448, −2.34638780384752875802484983812, −0.922557076904206370679947408226,
1.17872831476460790667965119267, 2.70076932537563323897860230178, 3.80200570354282909564091179989, 4.98017394013264737195658428392, 5.95073494694496121378002988225, 7.10203615070833533092102575646, 8.018359898569403357876183725571, 8.466371673679721596453451314728, 9.299121319582635820185316344796, 9.911147530419775627587681655717