Properties

Label 2-825-55.14-c1-0-26
Degree $2$
Conductor $825$
Sign $0.923 + 0.383i$
Analytic cond. $6.58765$
Root an. cond. $2.56664$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.363 + 0.5i)2-s + (0.951 − 0.309i)3-s + (0.5 − 1.53i)4-s + (0.5 + 0.363i)6-s + (0.726 + 0.236i)7-s + (2.12 − 0.690i)8-s + (0.809 − 0.587i)9-s + (3.23 + 0.726i)11-s − 1.61i·12-s + (0.726 + i)13-s + (0.145 + 0.449i)14-s + (−1.49 − 1.08i)16-s + (−1.17 + 1.61i)17-s + (0.587 + 0.190i)18-s + (−1.54 − 4.75i)19-s + ⋯
L(s)  = 1  + (0.256 + 0.353i)2-s + (0.549 − 0.178i)3-s + (0.250 − 0.769i)4-s + (0.204 + 0.148i)6-s + (0.274 + 0.0892i)7-s + (0.751 − 0.244i)8-s + (0.269 − 0.195i)9-s + (0.975 + 0.219i)11-s − 0.467i·12-s + (0.201 + 0.277i)13-s + (0.0389 + 0.120i)14-s + (−0.374 − 0.272i)16-s + (−0.285 + 0.392i)17-s + (0.138 + 0.0450i)18-s + (−0.354 − 1.09i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.383i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.923 + 0.383i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $0.923 + 0.383i$
Analytic conductor: \(6.58765\)
Root analytic conductor: \(2.56664\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{825} (124, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 825,\ (\ :1/2),\ 0.923 + 0.383i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.45798 - 0.490731i\)
\(L(\frac12)\) \(\approx\) \(2.45798 - 0.490731i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.951 + 0.309i)T \)
5 \( 1 \)
11 \( 1 + (-3.23 - 0.726i)T \)
good2 \( 1 + (-0.363 - 0.5i)T + (-0.618 + 1.90i)T^{2} \)
7 \( 1 + (-0.726 - 0.236i)T + (5.66 + 4.11i)T^{2} \)
13 \( 1 + (-0.726 - i)T + (-4.01 + 12.3i)T^{2} \)
17 \( 1 + (1.17 - 1.61i)T + (-5.25 - 16.1i)T^{2} \)
19 \( 1 + (1.54 + 4.75i)T + (-15.3 + 11.1i)T^{2} \)
23 \( 1 - 2.38iT - 23T^{2} \)
29 \( 1 + (-1.80 + 5.56i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (5.66 - 4.11i)T + (9.57 - 29.4i)T^{2} \)
37 \( 1 + (-7.10 - 2.30i)T + (29.9 + 21.7i)T^{2} \)
41 \( 1 + (-0.781 - 2.40i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 + 2.09iT - 43T^{2} \)
47 \( 1 + (-4.84 + 1.57i)T + (38.0 - 27.6i)T^{2} \)
53 \( 1 + (-4.47 - 6.16i)T + (-16.3 + 50.4i)T^{2} \)
59 \( 1 + (-2.07 + 6.37i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 + (5.66 + 4.11i)T + (18.8 + 58.0i)T^{2} \)
67 \( 1 - 9.38iT - 67T^{2} \)
71 \( 1 + (-6.47 - 4.70i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (12.8 + 4.16i)T + (59.0 + 42.9i)T^{2} \)
79 \( 1 + (6.54 - 4.75i)T + (24.4 - 75.1i)T^{2} \)
83 \( 1 + (3.35 - 4.61i)T + (-25.6 - 78.9i)T^{2} \)
89 \( 1 + 10.8T + 89T^{2} \)
97 \( 1 + (-6.74 - 9.28i)T + (-29.9 + 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04367164540737831499948233747, −9.290515060724120595057900392946, −8.544001557925253230710004460110, −7.40199691240896409651455067154, −6.70455575110751998479066386089, −5.93439913657728261993685007590, −4.76673584815397154849921816037, −3.94032804511189996035801695541, −2.38571547111697959282256902134, −1.29133026980669130427797980558, 1.65291311969125213208295169379, 2.85231998013456925733880370615, 3.82458476134419301968501853750, 4.48693901156370274588238865767, 5.89902104134573878996277792223, 7.00654285700361823412675012405, 7.80108227094500350680642756456, 8.588651314446110179506098770221, 9.301872465014341071768257352306, 10.44230981744127740825999600849

Graph of the $Z$-function along the critical line