L(s) = 1 | − 5.26i·2-s + 3i·3-s − 19.6·4-s + 15.7·6-s − 10.3i·7-s + 61.4i·8-s − 9·9-s + 11·11-s − 59.0i·12-s − 63.9i·13-s − 54.3·14-s + 165.·16-s + 17.1i·17-s + 47.3i·18-s − 90.2·19-s + ⋯ |
L(s) = 1 | − 1.86i·2-s + 0.577i·3-s − 2.46·4-s + 1.07·6-s − 0.557i·7-s + 2.71i·8-s − 0.333·9-s + 0.301·11-s − 1.42i·12-s − 1.36i·13-s − 1.03·14-s + 2.59·16-s + 0.244i·17-s + 0.620i·18-s − 1.08·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.8683758708\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8683758708\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 3iT \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 11T \) |
good | 2 | \( 1 + 5.26iT - 8T^{2} \) |
| 7 | \( 1 + 10.3iT - 343T^{2} \) |
| 13 | \( 1 + 63.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 17.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 90.2T + 6.85e3T^{2} \) |
| 23 | \( 1 - 212. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 57.5T + 2.43e4T^{2} \) |
| 31 | \( 1 + 141.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 257. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 225.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 347. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 404. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 259. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 853.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 203.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 266. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 92.4T + 3.57e5T^{2} \) |
| 73 | \( 1 - 242. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.02e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 706. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 440.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 197. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.987803004276853830135248231135, −9.353832691099224331669861002334, −8.487161080627044418988778611796, −7.53780469616480412008211462934, −5.82232252509367989238130665924, −4.93211562044559100897948968175, −3.85323246458169940572605926418, −3.39635407773799364715554303795, −2.13871012016743284835804207660, −0.920839449375790964590036914452,
0.29333210226067697247864627490, 2.10591576118162003286585364675, 3.94590424797836244282359280031, 4.83794198636038342370295609915, 5.80093538313168097969524945206, 6.78557383137548751945948070641, 6.85270693995958260047025808178, 8.204613395578948146656365236933, 8.707827551874752072183790133762, 9.317123083981973370888742840184