L(s) = 1 | − 4.03i·2-s − 3i·3-s − 8.31·4-s − 12.1·6-s + 6.49i·7-s + 1.27i·8-s − 9·9-s + 11·11-s + 24.9i·12-s + 30.5i·13-s + 26.2·14-s − 61.3·16-s + 43.1i·17-s + 36.3i·18-s + 6.46·19-s + ⋯ |
L(s) = 1 | − 1.42i·2-s − 0.577i·3-s − 1.03·4-s − 0.824·6-s + 0.350i·7-s + 0.0564i·8-s − 0.333·9-s + 0.301·11-s + 0.600i·12-s + 0.651i·13-s + 0.501·14-s − 0.958·16-s + 0.615i·17-s + 0.476i·18-s + 0.0780·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.671974921\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.671974921\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 11T \) |
good | 2 | \( 1 + 4.03iT - 8T^{2} \) |
| 7 | \( 1 - 6.49iT - 343T^{2} \) |
| 13 | \( 1 - 30.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 43.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 6.46T + 6.85e3T^{2} \) |
| 23 | \( 1 - 108. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 274.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 68.5T + 2.97e4T^{2} \) |
| 37 | \( 1 - 402. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 268.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 30.5iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 31.5iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 252. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 558.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 335.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 28.7iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 89.0T + 3.57e5T^{2} \) |
| 73 | \( 1 + 717. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 200.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 243. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 312.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 27.9iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.897227882160725086121588474102, −9.002858002388987641067336801170, −8.277840037737133366769833192639, −7.02357200474131996845088783104, −6.27717464459518605422831793069, −4.98790236595588346133155718159, −3.88538186308967808003943169684, −2.92344882352631442745012633099, −1.89877290027218116958942374658, −1.04741049333114436465454450466,
0.51473467988473173932800239605, 2.56703693922827706083367213764, 3.93532243788376720109143808828, 4.88798085282220026819920151983, 5.62023954396384227867963650085, 6.60591829490830876988371092763, 7.27417633653381976495122233457, 8.274355096570336492722279469190, 8.822570472452850101987270472217, 9.845037471935401790126314681918