L(s) = 1 | + 1.44·2-s − 9·3-s − 29.9·4-s − 13.0·6-s − 41.5·7-s − 89.5·8-s + 81·9-s + 121·11-s + 269.·12-s − 434.·13-s − 60.0·14-s + 827.·16-s − 474.·17-s + 117.·18-s − 2.58e3·19-s + 373.·21-s + 175.·22-s + 3.67e3·23-s + 806.·24-s − 628.·26-s − 729·27-s + 1.24e3·28-s − 4.26e3·29-s − 8.41e3·31-s + 4.06e3·32-s − 1.08e3·33-s − 686.·34-s + ⋯ |
L(s) = 1 | + 0.255·2-s − 0.577·3-s − 0.934·4-s − 0.147·6-s − 0.320·7-s − 0.494·8-s + 0.333·9-s + 0.301·11-s + 0.539·12-s − 0.713·13-s − 0.0819·14-s + 0.807·16-s − 0.398·17-s + 0.0852·18-s − 1.64·19-s + 0.184·21-s + 0.0771·22-s + 1.44·23-s + 0.285·24-s − 0.182·26-s − 0.192·27-s + 0.299·28-s − 0.942·29-s − 1.57·31-s + 0.701·32-s − 0.174·33-s − 0.101·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.4694016009\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4694016009\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 9T \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 121T \) |
good | 2 | \( 1 - 1.44T + 32T^{2} \) |
| 7 | \( 1 + 41.5T + 1.68e4T^{2} \) |
| 13 | \( 1 + 434.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 474.T + 1.41e6T^{2} \) |
| 19 | \( 1 + 2.58e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 3.67e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 4.26e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 8.41e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.39e4T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.77e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.14e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 1.10e4T + 2.29e8T^{2} \) |
| 53 | \( 1 + 2.09e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 3.30e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 3.23e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 2.88e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 2.04e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 4.33e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 9.53e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 1.66e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 1.43e5T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.28e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.163662353033792345272206418256, −9.053810064314228822838397162748, −7.68762971409453792461550593834, −6.77051400578451731921509263028, −5.85849079643668944199245432112, −4.97463700206461328474313945580, −4.24401158238361302757498252062, −3.23473432158802239518757511560, −1.77005943330697534560452696664, −0.30446372268100720435017360940,
0.30446372268100720435017360940, 1.77005943330697534560452696664, 3.23473432158802239518757511560, 4.24401158238361302757498252062, 4.97463700206461328474313945580, 5.85849079643668944199245432112, 6.77051400578451731921509263028, 7.68762971409453792461550593834, 9.053810064314228822838397162748, 9.163662353033792345272206418256