Properties

Label 2-825-1.1-c5-0-7
Degree $2$
Conductor $825$
Sign $1$
Analytic cond. $132.316$
Root an. cond. $11.5028$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.44·2-s − 9·3-s − 29.9·4-s − 13.0·6-s − 41.5·7-s − 89.5·8-s + 81·9-s + 121·11-s + 269.·12-s − 434.·13-s − 60.0·14-s + 827.·16-s − 474.·17-s + 117.·18-s − 2.58e3·19-s + 373.·21-s + 175.·22-s + 3.67e3·23-s + 806.·24-s − 628.·26-s − 729·27-s + 1.24e3·28-s − 4.26e3·29-s − 8.41e3·31-s + 4.06e3·32-s − 1.08e3·33-s − 686.·34-s + ⋯
L(s)  = 1  + 0.255·2-s − 0.577·3-s − 0.934·4-s − 0.147·6-s − 0.320·7-s − 0.494·8-s + 0.333·9-s + 0.301·11-s + 0.539·12-s − 0.713·13-s − 0.0819·14-s + 0.807·16-s − 0.398·17-s + 0.0852·18-s − 1.64·19-s + 0.184·21-s + 0.0771·22-s + 1.44·23-s + 0.285·24-s − 0.182·26-s − 0.192·27-s + 0.299·28-s − 0.942·29-s − 1.57·31-s + 0.701·32-s − 0.174·33-s − 0.101·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(132.316\)
Root analytic conductor: \(11.5028\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 825,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4694016009\)
\(L(\frac12)\) \(\approx\) \(0.4694016009\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
5 \( 1 \)
11 \( 1 - 121T \)
good2 \( 1 - 1.44T + 32T^{2} \)
7 \( 1 + 41.5T + 1.68e4T^{2} \)
13 \( 1 + 434.T + 3.71e5T^{2} \)
17 \( 1 + 474.T + 1.41e6T^{2} \)
19 \( 1 + 2.58e3T + 2.47e6T^{2} \)
23 \( 1 - 3.67e3T + 6.43e6T^{2} \)
29 \( 1 + 4.26e3T + 2.05e7T^{2} \)
31 \( 1 + 8.41e3T + 2.86e7T^{2} \)
37 \( 1 + 1.39e4T + 6.93e7T^{2} \)
41 \( 1 - 1.77e3T + 1.15e8T^{2} \)
43 \( 1 - 1.14e4T + 1.47e8T^{2} \)
47 \( 1 - 1.10e4T + 2.29e8T^{2} \)
53 \( 1 + 2.09e4T + 4.18e8T^{2} \)
59 \( 1 + 3.30e4T + 7.14e8T^{2} \)
61 \( 1 + 3.23e4T + 8.44e8T^{2} \)
67 \( 1 + 2.88e4T + 1.35e9T^{2} \)
71 \( 1 + 2.04e4T + 1.80e9T^{2} \)
73 \( 1 - 4.33e4T + 2.07e9T^{2} \)
79 \( 1 + 9.53e4T + 3.07e9T^{2} \)
83 \( 1 - 1.66e4T + 3.93e9T^{2} \)
89 \( 1 - 1.43e5T + 5.58e9T^{2} \)
97 \( 1 - 1.28e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.163662353033792345272206418256, −9.053810064314228822838397162748, −7.68762971409453792461550593834, −6.77051400578451731921509263028, −5.85849079643668944199245432112, −4.97463700206461328474313945580, −4.24401158238361302757498252062, −3.23473432158802239518757511560, −1.77005943330697534560452696664, −0.30446372268100720435017360940, 0.30446372268100720435017360940, 1.77005943330697534560452696664, 3.23473432158802239518757511560, 4.24401158238361302757498252062, 4.97463700206461328474313945580, 5.85849079643668944199245432112, 6.77051400578451731921509263028, 7.68762971409453792461550593834, 9.053810064314228822838397162748, 9.163662353033792345272206418256

Graph of the $Z$-function along the critical line