L(s) = 1 | + 1.31·2-s + 9·3-s − 30.2·4-s + 11.8·6-s − 87.4·7-s − 82.0·8-s + 81·9-s + 121·11-s − 272.·12-s + 521.·13-s − 115.·14-s + 860.·16-s − 68.1·17-s + 106.·18-s − 1.58e3·19-s − 787.·21-s + 159.·22-s + 191.·23-s − 738.·24-s + 686.·26-s + 729·27-s + 2.64e3·28-s − 4.25e3·29-s − 83.6·31-s + 3.75e3·32-s + 1.08e3·33-s − 89.7·34-s + ⋯ |
L(s) = 1 | + 0.232·2-s + 0.577·3-s − 0.945·4-s + 0.134·6-s − 0.674·7-s − 0.453·8-s + 0.333·9-s + 0.301·11-s − 0.546·12-s + 0.855·13-s − 0.157·14-s + 0.840·16-s − 0.0571·17-s + 0.0776·18-s − 1.00·19-s − 0.389·21-s + 0.0702·22-s + 0.0756·23-s − 0.261·24-s + 0.199·26-s + 0.192·27-s + 0.638·28-s − 0.939·29-s − 0.0156·31-s + 0.648·32-s + 0.174·33-s − 0.0133·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.817269247\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.817269247\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 9T \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 121T \) |
good | 2 | \( 1 - 1.31T + 32T^{2} \) |
| 7 | \( 1 + 87.4T + 1.68e4T^{2} \) |
| 13 | \( 1 - 521.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 68.1T + 1.41e6T^{2} \) |
| 19 | \( 1 + 1.58e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 191.T + 6.43e6T^{2} \) |
| 29 | \( 1 + 4.25e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 83.6T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.44e4T + 6.93e7T^{2} \) |
| 41 | \( 1 - 6.15e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.40e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 1.47e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.09e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 1.60e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 4.10e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 1.25e3T + 1.35e9T^{2} \) |
| 71 | \( 1 - 4.76e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 7.35e3T + 2.07e9T^{2} \) |
| 79 | \( 1 - 9.01e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 1.08e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 1.12e5T + 5.58e9T^{2} \) |
| 97 | \( 1 - 9.69e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.309376843858148673002023187446, −8.749927628168522095535822378272, −8.008454274463396117673558250351, −6.80602941513035923220187516440, −5.98406029273359512951296313040, −4.90755088258900252997806835162, −3.84617802883444688107782419284, −3.35620195450311527974443322409, −1.92800345538882350535471115198, −0.57237827489796841002637860026,
0.57237827489796841002637860026, 1.92800345538882350535471115198, 3.35620195450311527974443322409, 3.84617802883444688107782419284, 4.90755088258900252997806835162, 5.98406029273359512951296313040, 6.80602941513035923220187516440, 8.008454274463396117673558250351, 8.749927628168522095535822378272, 9.309376843858148673002023187446