Properties

Label 2-825-1.1-c5-0-147
Degree $2$
Conductor $825$
Sign $-1$
Analytic cond. $132.316$
Root an. cond. $11.5028$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.21·2-s + 9·3-s + 20.1·4-s + 64.9·6-s − 147.·7-s − 85.7·8-s + 81·9-s + 121·11-s + 181.·12-s + 1.12e3·13-s − 1.06e3·14-s − 1.26e3·16-s − 1.01e3·17-s + 584.·18-s − 13.7·19-s − 1.32e3·21-s + 873.·22-s + 2.11e3·23-s − 771.·24-s + 8.11e3·26-s + 729·27-s − 2.96e3·28-s + 3.12e3·29-s − 9.62e3·31-s − 6.37e3·32-s + 1.08e3·33-s − 7.36e3·34-s + ⋯
L(s)  = 1  + 1.27·2-s + 0.577·3-s + 0.628·4-s + 0.736·6-s − 1.13·7-s − 0.473·8-s + 0.333·9-s + 0.301·11-s + 0.363·12-s + 1.84·13-s − 1.45·14-s − 1.23·16-s − 0.855·17-s + 0.425·18-s − 0.00871·19-s − 0.657·21-s + 0.384·22-s + 0.834·23-s − 0.273·24-s + 2.35·26-s + 0.192·27-s − 0.715·28-s + 0.689·29-s − 1.79·31-s − 1.10·32-s + 0.174·33-s − 1.09·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(132.316\)
Root analytic conductor: \(11.5028\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 825,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
5 \( 1 \)
11 \( 1 - 121T \)
good2 \( 1 - 7.21T + 32T^{2} \)
7 \( 1 + 147.T + 1.68e4T^{2} \)
13 \( 1 - 1.12e3T + 3.71e5T^{2} \)
17 \( 1 + 1.01e3T + 1.41e6T^{2} \)
19 \( 1 + 13.7T + 2.47e6T^{2} \)
23 \( 1 - 2.11e3T + 6.43e6T^{2} \)
29 \( 1 - 3.12e3T + 2.05e7T^{2} \)
31 \( 1 + 9.62e3T + 2.86e7T^{2} \)
37 \( 1 - 3.12e3T + 6.93e7T^{2} \)
41 \( 1 + 5.88e3T + 1.15e8T^{2} \)
43 \( 1 + 2.05e4T + 1.47e8T^{2} \)
47 \( 1 + 2.47e4T + 2.29e8T^{2} \)
53 \( 1 + 2.27e4T + 4.18e8T^{2} \)
59 \( 1 + 1.45e4T + 7.14e8T^{2} \)
61 \( 1 - 4.39e4T + 8.44e8T^{2} \)
67 \( 1 - 3.14e4T + 1.35e9T^{2} \)
71 \( 1 + 2.91e4T + 1.80e9T^{2} \)
73 \( 1 + 4.95e4T + 2.07e9T^{2} \)
79 \( 1 + 8.50e4T + 3.07e9T^{2} \)
83 \( 1 + 7.73e4T + 3.93e9T^{2} \)
89 \( 1 - 7.02e4T + 5.58e9T^{2} \)
97 \( 1 - 2.10e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.986541959199194503411448627472, −8.393849698452879439263566599265, −6.80779292942777087522225672970, −6.46361202872644410232414110433, −5.46264400393612852537636634635, −4.33380236300215699309266846280, −3.49526518326860436033217448643, −3.03292379373707671758531996410, −1.59691629141447005332979634869, 0, 1.59691629141447005332979634869, 3.03292379373707671758531996410, 3.49526518326860436033217448643, 4.33380236300215699309266846280, 5.46264400393612852537636634635, 6.46361202872644410232414110433, 6.80779292942777087522225672970, 8.393849698452879439263566599265, 8.986541959199194503411448627472

Graph of the $Z$-function along the critical line