Properties

Label 2-825-1.1-c5-0-133
Degree $2$
Conductor $825$
Sign $-1$
Analytic cond. $132.316$
Root an. cond. $11.5028$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.30·2-s + 9·3-s − 13.4·4-s − 38.7·6-s + 148.·7-s + 195.·8-s + 81·9-s + 121·11-s − 121.·12-s − 234.·13-s − 637.·14-s − 409.·16-s − 1.03e3·17-s − 348.·18-s + 1.26e3·19-s + 1.33e3·21-s − 520.·22-s − 384.·23-s + 1.76e3·24-s + 1.00e3·26-s + 729·27-s − 2.00e3·28-s − 4.48e3·29-s − 997.·31-s − 4.50e3·32-s + 1.08e3·33-s + 4.43e3·34-s + ⋯
L(s)  = 1  − 0.760·2-s + 0.577·3-s − 0.421·4-s − 0.438·6-s + 1.14·7-s + 1.08·8-s + 0.333·9-s + 0.301·11-s − 0.243·12-s − 0.384·13-s − 0.869·14-s − 0.400·16-s − 0.865·17-s − 0.253·18-s + 0.804·19-s + 0.660·21-s − 0.229·22-s − 0.151·23-s + 0.624·24-s + 0.292·26-s + 0.192·27-s − 0.482·28-s − 0.990·29-s − 0.186·31-s − 0.776·32-s + 0.174·33-s + 0.658·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(132.316\)
Root analytic conductor: \(11.5028\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 825,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
5 \( 1 \)
11 \( 1 - 121T \)
good2 \( 1 + 4.30T + 32T^{2} \)
7 \( 1 - 148.T + 1.68e4T^{2} \)
13 \( 1 + 234.T + 3.71e5T^{2} \)
17 \( 1 + 1.03e3T + 1.41e6T^{2} \)
19 \( 1 - 1.26e3T + 2.47e6T^{2} \)
23 \( 1 + 384.T + 6.43e6T^{2} \)
29 \( 1 + 4.48e3T + 2.05e7T^{2} \)
31 \( 1 + 997.T + 2.86e7T^{2} \)
37 \( 1 + 5.16e3T + 6.93e7T^{2} \)
41 \( 1 - 2.25e3T + 1.15e8T^{2} \)
43 \( 1 + 1.58e4T + 1.47e8T^{2} \)
47 \( 1 + 1.20e4T + 2.29e8T^{2} \)
53 \( 1 - 3.85e3T + 4.18e8T^{2} \)
59 \( 1 + 2.02e4T + 7.14e8T^{2} \)
61 \( 1 - 2.00e3T + 8.44e8T^{2} \)
67 \( 1 + 4.09e4T + 1.35e9T^{2} \)
71 \( 1 - 1.69e4T + 1.80e9T^{2} \)
73 \( 1 - 5.66e4T + 2.07e9T^{2} \)
79 \( 1 - 5.85e4T + 3.07e9T^{2} \)
83 \( 1 - 5.22e4T + 3.93e9T^{2} \)
89 \( 1 - 5.51e4T + 5.58e9T^{2} \)
97 \( 1 + 9.93e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.083581113403751102577151282996, −8.222394043964952025674930667858, −7.71462614717627246216984354202, −6.80463195098424723954485193043, −5.27038623333678402876945574708, −4.58368040971661992009574468326, −3.57519839619762562748477908850, −2.07548966447855367410615912931, −1.31390387204305766809285125176, 0, 1.31390387204305766809285125176, 2.07548966447855367410615912931, 3.57519839619762562748477908850, 4.58368040971661992009574468326, 5.27038623333678402876945574708, 6.80463195098424723954485193043, 7.71462614717627246216984354202, 8.222394043964952025674930667858, 9.083581113403751102577151282996

Graph of the $Z$-function along the critical line