L(s) = 1 | − 4.30·2-s + 9·3-s − 13.4·4-s − 38.7·6-s + 148.·7-s + 195.·8-s + 81·9-s + 121·11-s − 121.·12-s − 234.·13-s − 637.·14-s − 409.·16-s − 1.03e3·17-s − 348.·18-s + 1.26e3·19-s + 1.33e3·21-s − 520.·22-s − 384.·23-s + 1.76e3·24-s + 1.00e3·26-s + 729·27-s − 2.00e3·28-s − 4.48e3·29-s − 997.·31-s − 4.50e3·32-s + 1.08e3·33-s + 4.43e3·34-s + ⋯ |
L(s) = 1 | − 0.760·2-s + 0.577·3-s − 0.421·4-s − 0.438·6-s + 1.14·7-s + 1.08·8-s + 0.333·9-s + 0.301·11-s − 0.243·12-s − 0.384·13-s − 0.869·14-s − 0.400·16-s − 0.865·17-s − 0.253·18-s + 0.804·19-s + 0.660·21-s − 0.229·22-s − 0.151·23-s + 0.624·24-s + 0.292·26-s + 0.192·27-s − 0.482·28-s − 0.990·29-s − 0.186·31-s − 0.776·32-s + 0.174·33-s + 0.658·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 9T \) |
| 5 | \( 1 \) |
| 11 | \( 1 - 121T \) |
good | 2 | \( 1 + 4.30T + 32T^{2} \) |
| 7 | \( 1 - 148.T + 1.68e4T^{2} \) |
| 13 | \( 1 + 234.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 1.03e3T + 1.41e6T^{2} \) |
| 19 | \( 1 - 1.26e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 384.T + 6.43e6T^{2} \) |
| 29 | \( 1 + 4.48e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 997.T + 2.86e7T^{2} \) |
| 37 | \( 1 + 5.16e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 2.25e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.58e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + 1.20e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 3.85e3T + 4.18e8T^{2} \) |
| 59 | \( 1 + 2.02e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.00e3T + 8.44e8T^{2} \) |
| 67 | \( 1 + 4.09e4T + 1.35e9T^{2} \) |
| 71 | \( 1 - 1.69e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 5.66e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 5.85e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 5.22e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 5.51e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 9.93e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.083581113403751102577151282996, −8.222394043964952025674930667858, −7.71462614717627246216984354202, −6.80463195098424723954485193043, −5.27038623333678402876945574708, −4.58368040971661992009574468326, −3.57519839619762562748477908850, −2.07548966447855367410615912931, −1.31390387204305766809285125176, 0,
1.31390387204305766809285125176, 2.07548966447855367410615912931, 3.57519839619762562748477908850, 4.58368040971661992009574468326, 5.27038623333678402876945574708, 6.80463195098424723954485193043, 7.71462614717627246216984354202, 8.222394043964952025674930667858, 9.083581113403751102577151282996