Properties

Label 2-825-1.1-c5-0-108
Degree $2$
Conductor $825$
Sign $-1$
Analytic cond. $132.316$
Root an. cond. $11.5028$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.78·2-s + 9·3-s + 1.45·4-s − 52.0·6-s − 17.6·7-s + 176.·8-s + 81·9-s + 121·11-s + 13.1·12-s − 674.·13-s + 102.·14-s − 1.06e3·16-s + 2.11e3·17-s − 468.·18-s − 2.30e3·19-s − 158.·21-s − 699.·22-s + 3.07e3·23-s + 1.59e3·24-s + 3.90e3·26-s + 729·27-s − 25.7·28-s − 1.43e3·29-s − 5.15e3·31-s + 526.·32-s + 1.08e3·33-s − 1.22e4·34-s + ⋯
L(s)  = 1  − 1.02·2-s + 0.577·3-s + 0.0455·4-s − 0.590·6-s − 0.136·7-s + 0.975·8-s + 0.333·9-s + 0.301·11-s + 0.0262·12-s − 1.10·13-s + 0.139·14-s − 1.04·16-s + 1.77·17-s − 0.340·18-s − 1.46·19-s − 0.0786·21-s − 0.308·22-s + 1.21·23-s + 0.563·24-s + 1.13·26-s + 0.192·27-s − 0.00619·28-s − 0.317·29-s − 0.963·31-s + 0.0909·32-s + 0.174·33-s − 1.81·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(132.316\)
Root analytic conductor: \(11.5028\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 825,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
5 \( 1 \)
11 \( 1 - 121T \)
good2 \( 1 + 5.78T + 32T^{2} \)
7 \( 1 + 17.6T + 1.68e4T^{2} \)
13 \( 1 + 674.T + 3.71e5T^{2} \)
17 \( 1 - 2.11e3T + 1.41e6T^{2} \)
19 \( 1 + 2.30e3T + 2.47e6T^{2} \)
23 \( 1 - 3.07e3T + 6.43e6T^{2} \)
29 \( 1 + 1.43e3T + 2.05e7T^{2} \)
31 \( 1 + 5.15e3T + 2.86e7T^{2} \)
37 \( 1 + 6.92e3T + 6.93e7T^{2} \)
41 \( 1 - 2.84e3T + 1.15e8T^{2} \)
43 \( 1 - 1.16e4T + 1.47e8T^{2} \)
47 \( 1 + 3.45e3T + 2.29e8T^{2} \)
53 \( 1 - 1.81e4T + 4.18e8T^{2} \)
59 \( 1 + 8.97e3T + 7.14e8T^{2} \)
61 \( 1 + 378.T + 8.44e8T^{2} \)
67 \( 1 - 1.22e4T + 1.35e9T^{2} \)
71 \( 1 - 5.58e4T + 1.80e9T^{2} \)
73 \( 1 + 1.97e4T + 2.07e9T^{2} \)
79 \( 1 + 1.34e4T + 3.07e9T^{2} \)
83 \( 1 + 4.20e4T + 3.93e9T^{2} \)
89 \( 1 + 8.12e4T + 5.58e9T^{2} \)
97 \( 1 + 1.52e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.090023742815341498142174035297, −8.336691385767081788545429421265, −7.52952586048962628361150951615, −6.91401248555190957101366837079, −5.48504101154572855845718291019, −4.48601481583481356968311315583, −3.41723391003108686861821456561, −2.19454320605859059652973046126, −1.14705849442005581393992145520, 0, 1.14705849442005581393992145520, 2.19454320605859059652973046126, 3.41723391003108686861821456561, 4.48601481583481356968311315583, 5.48504101154572855845718291019, 6.91401248555190957101366837079, 7.52952586048962628361150951615, 8.336691385767081788545429421265, 9.090023742815341498142174035297

Graph of the $Z$-function along the critical line