Properties

Label 2-82110-1.1-c1-0-36
Degree $2$
Conductor $82110$
Sign $-1$
Analytic cond. $655.651$
Root an. cond. $25.6056$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s − 7-s + 8-s + 9-s + 10-s − 4·11-s + 12-s − 2·13-s − 14-s + 15-s + 16-s + 17-s + 18-s + 4·19-s + 20-s − 21-s − 4·22-s − 23-s + 24-s + 25-s − 2·26-s + 27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.218·21-s − 0.852·22-s − 0.208·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23\)
Sign: $-1$
Analytic conductor: \(655.651\)
Root analytic conductor: \(25.6056\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 82110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 - T \)
23 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20628706077910, −13.59875543144581, −13.43552661322746, −12.69737345809749, −12.46609898317890, −11.93949892615106, −11.22975978193443, −10.66482126757026, −10.26032485214607, −9.653496237292497, −9.417105909263039, −8.539916999052313, −8.135457287679649, −7.418126496220017, −7.174531708768344, −6.526225561723915, −5.753774810131013, −5.386617651543202, −4.918679122961710, −4.232740837303174, −3.434064583467599, −3.127707731063421, −2.398529160813633, −1.992685240318772, −1.070211440120763, 0, 1.070211440120763, 1.992685240318772, 2.398529160813633, 3.127707731063421, 3.434064583467599, 4.232740837303174, 4.918679122961710, 5.386617651543202, 5.753774810131013, 6.526225561723915, 7.174531708768344, 7.418126496220017, 8.135457287679649, 8.539916999052313, 9.417105909263039, 9.653496237292497, 10.26032485214607, 10.66482126757026, 11.22975978193443, 11.93949892615106, 12.46609898317890, 12.69737345809749, 13.43552661322746, 13.59875543144581, 14.20628706077910

Graph of the $Z$-function along the critical line