Properties

Label 2-82110-1.1-c1-0-14
Degree $2$
Conductor $82110$
Sign $1$
Analytic cond. $655.651$
Root an. cond. $25.6056$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s − 7-s + 8-s + 9-s + 10-s + 4·11-s + 12-s + 2·13-s − 14-s + 15-s + 16-s − 17-s + 18-s − 2·19-s + 20-s − 21-s + 4·22-s − 23-s + 24-s + 25-s + 2·26-s + 27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s + 0.288·12-s + 0.554·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 0.458·19-s + 0.223·20-s − 0.218·21-s + 0.852·22-s − 0.208·23-s + 0.204·24-s + 1/5·25-s + 0.392·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23\)
Sign: $1$
Analytic conductor: \(655.651\)
Root analytic conductor: \(25.6056\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 82110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.631025834\)
\(L(\frac12)\) \(\approx\) \(6.631025834\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 + T \)
23 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.86125220964856, −13.67046089524859, −13.08453973097776, −12.51474031572386, −12.11945057401879, −11.61816564322029, −11.04867732062947, −10.39609972250450, −10.02625019984951, −9.448414609193654, −8.934435219298506, −8.291334693538015, −8.119760529949156, −6.928406044150355, −6.774749936310262, −6.363421056576912, −5.728791347964053, −5.019044951597466, −4.423494078905480, −3.960604457218700, −3.236762907674622, −2.944743971849290, −1.963096423696987, −1.598707981783375, −0.7057070624066350, 0.7057070624066350, 1.598707981783375, 1.963096423696987, 2.944743971849290, 3.236762907674622, 3.960604457218700, 4.423494078905480, 5.019044951597466, 5.728791347964053, 6.363421056576912, 6.774749936310262, 6.928406044150355, 8.119760529949156, 8.291334693538015, 8.934435219298506, 9.448414609193654, 10.02625019984951, 10.39609972250450, 11.04867732062947, 11.61816564322029, 12.11945057401879, 12.51474031572386, 13.08453973097776, 13.67046089524859, 13.86125220964856

Graph of the $Z$-function along the critical line