L(s) = 1 | + (1.45 − 1.45i)2-s − 2.21i·4-s + (2.01 + 2.01i)5-s + (−1.13 − 2.38i)7-s + (−0.311 − 0.311i)8-s + 5.84·10-s + (−0.451 − 0.451i)11-s + (3.40 + 1.19i)13-s + (−5.11 − 1.81i)14-s + 3.52·16-s + 4.32·17-s + (−3.40 − 3.40i)19-s + (4.46 − 4.46i)20-s − 1.31·22-s − 0.933i·23-s + ⋯ |
L(s) = 1 | + (1.02 − 1.02i)2-s − 1.10i·4-s + (0.900 + 0.900i)5-s + (−0.429 − 0.903i)7-s + (−0.109 − 0.109i)8-s + 1.84·10-s + (−0.136 − 0.136i)11-s + (0.943 + 0.330i)13-s + (−1.36 − 0.486i)14-s + 0.881·16-s + 1.04·17-s + (−0.780 − 0.780i)19-s + (0.997 − 0.997i)20-s − 0.279·22-s − 0.194i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.389 + 0.920i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.389 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.59764 - 1.72093i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.59764 - 1.72093i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (1.13 + 2.38i)T \) |
| 13 | \( 1 + (-3.40 - 1.19i)T \) |
good | 2 | \( 1 + (-1.45 + 1.45i)T - 2iT^{2} \) |
| 5 | \( 1 + (-2.01 - 2.01i)T + 5iT^{2} \) |
| 11 | \( 1 + (0.451 + 0.451i)T + 11iT^{2} \) |
| 17 | \( 1 - 4.32T + 17T^{2} \) |
| 19 | \( 1 + (3.40 + 3.40i)T + 19iT^{2} \) |
| 23 | \( 1 + 0.933iT - 23T^{2} \) |
| 29 | \( 1 + 6.33T + 29T^{2} \) |
| 31 | \( 1 + (-5.47 - 5.47i)T + 31iT^{2} \) |
| 37 | \( 1 + (-2.14 - 2.14i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.81 + 1.81i)T + 41iT^{2} \) |
| 43 | \( 1 + 10.4iT - 43T^{2} \) |
| 47 | \( 1 + (5.90 - 5.90i)T - 47iT^{2} \) |
| 53 | \( 1 + 3.36T + 53T^{2} \) |
| 59 | \( 1 + (-0.255 + 0.255i)T - 59iT^{2} \) |
| 61 | \( 1 - 7.78iT - 61T^{2} \) |
| 67 | \( 1 + (-7.28 + 7.28i)T - 67iT^{2} \) |
| 71 | \( 1 + (5.56 - 5.56i)T - 71iT^{2} \) |
| 73 | \( 1 + (8.86 - 8.86i)T - 73iT^{2} \) |
| 79 | \( 1 + 13.7T + 79T^{2} \) |
| 83 | \( 1 + (4.30 + 4.30i)T + 83iT^{2} \) |
| 89 | \( 1 + (5.61 - 5.61i)T - 89iT^{2} \) |
| 97 | \( 1 + (0.236 + 0.236i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36410918710567328961316720408, −9.760011750205749228919228916411, −8.482537567058087427605311675425, −7.21896313727740280547773827990, −6.37881752548711503325140889528, −5.56839385182950313993822362165, −4.37164961350038721074829213650, −3.46210904177348170202626013314, −2.68574889199557629581800307476, −1.43492746388035678306068519713,
1.59547213440903302772086212493, 3.20743431596971071316108314821, 4.34654451494194664985433277026, 5.43571192519228548608259278127, 5.82441394597496344625731456132, 6.45714158313176312458330858841, 7.82122148118195658285401801875, 8.464272829168614679725280803168, 9.528536233082389348937685634093, 10.10010648436024998308523227797