L(s) = 1 | + (0.866 + 1.5i)2-s + (−0.5 + 0.866i)4-s − 1.73·5-s + (−0.5 + 0.866i)7-s + 1.73·8-s + (−1.49 − 2.59i)10-s + (0.633 + 1.09i)11-s + (3.59 + 0.232i)13-s − 1.73·14-s + (2.49 + 4.33i)16-s + (−3.86 + 6.69i)17-s + (−1 + 1.73i)19-s + (0.866 − 1.50i)20-s + (−1.09 + 1.90i)22-s + (2.36 + 4.09i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 1.06i)2-s + (−0.250 + 0.433i)4-s − 0.774·5-s + (−0.188 + 0.327i)7-s + 0.612·8-s + (−0.474 − 0.821i)10-s + (0.191 + 0.331i)11-s + (0.997 + 0.0643i)13-s − 0.462·14-s + (0.624 + 1.08i)16-s + (−0.937 + 1.62i)17-s + (−0.229 + 0.397i)19-s + (0.193 − 0.335i)20-s + (−0.234 + 0.405i)22-s + (0.493 + 0.854i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.664 - 0.746i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.664 - 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.762260 + 1.69917i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.762260 + 1.69917i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-3.59 - 0.232i)T \) |
good | 2 | \( 1 + (-0.866 - 1.5i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 1.73T + 5T^{2} \) |
| 11 | \( 1 + (-0.633 - 1.09i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.86 - 6.69i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.36 - 4.09i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.19T + 31T^{2} \) |
| 37 | \( 1 + (-3.5 - 6.06i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.59 + 4.5i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.0980 + 0.169i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 12.9T + 47T^{2} \) |
| 53 | \( 1 - 9.92T + 53T^{2} \) |
| 59 | \( 1 + (-3.63 + 6.29i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.40 + 4.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.09 - 5.36i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 + 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 3.19T + 73T^{2} \) |
| 79 | \( 1 - 16.1T + 79T^{2} \) |
| 83 | \( 1 - 2.19T + 83T^{2} \) |
| 89 | \( 1 + (-6.46 - 11.1i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.19 - 5.53i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66269085391862428470021320100, −9.612507995338872836247114248582, −8.313508902216873771799654165412, −8.085578409298166374668235781995, −6.80515799414133270797056694387, −6.31367153352645821848031143752, −5.38688298048962016830168346771, −4.24279220095949821797261467522, −3.65084687526249175622769557865, −1.74197926939890262643808917422,
0.795358460552956475064080498450, 2.45773517442930590152149131707, 3.41776399418811759011358789549, 4.22843279020263432811690415438, 5.03009239526639397128313806933, 6.49029079214432068725010745250, 7.30891599084988899951216624108, 8.292155643609605566056909146328, 9.195158521482111146577365787089, 10.24330830276711452525573613782