Properties

Label 2-81144-1.1-c1-0-1
Degree $2$
Conductor $81144$
Sign $1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·11-s + 2·13-s + 2·17-s − 4·19-s − 23-s − 25-s + 6·29-s − 2·31-s − 8·37-s − 8·41-s − 6·43-s − 2·47-s − 12·53-s + 4·55-s − 2·61-s − 4·65-s + 14·67-s − 8·71-s − 12·73-s + 4·79-s + 4·83-s − 4·85-s − 6·89-s + 8·95-s − 2·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.603·11-s + 0.554·13-s + 0.485·17-s − 0.917·19-s − 0.208·23-s − 1/5·25-s + 1.11·29-s − 0.359·31-s − 1.31·37-s − 1.24·41-s − 0.914·43-s − 0.291·47-s − 1.64·53-s + 0.539·55-s − 0.256·61-s − 0.496·65-s + 1.71·67-s − 0.949·71-s − 1.40·73-s + 0.450·79-s + 0.439·83-s − 0.433·85-s − 0.635·89-s + 0.820·95-s − 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4490392126\)
\(L(\frac12)\) \(\approx\) \(0.4490392126\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.06888224497403, −13.38491303787596, −13.03539571118087, −12.39690050878923, −11.99484537707932, −11.59184233319586, −10.93772839429099, −10.55320107754698, −10.07572205002929, −9.511363861578599, −8.706924353638349, −8.377900710183433, −7.971114776716706, −7.458072049923857, −6.658802019272226, −6.481888149559969, −5.581589478698866, −5.117477131399113, −4.495305452317997, −3.904978865582158, −3.359710448547078, −2.849577819971147, −1.929278854062712, −1.336201484506049, −0.2185568307685928, 0.2185568307685928, 1.336201484506049, 1.929278854062712, 2.849577819971147, 3.359710448547078, 3.904978865582158, 4.495305452317997, 5.117477131399113, 5.581589478698866, 6.481888149559969, 6.658802019272226, 7.458072049923857, 7.971114776716706, 8.377900710183433, 8.706924353638349, 9.511363861578599, 10.07572205002929, 10.55320107754698, 10.93772839429099, 11.59184233319586, 11.99484537707932, 12.39690050878923, 13.03539571118087, 13.38491303787596, 14.06888224497403

Graph of the $Z$-function along the critical line