Properties

Label 2-8112-1.1-c1-0-37
Degree $2$
Conductor $8112$
Sign $1$
Analytic cond. $64.7746$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 2·7-s + 9-s + 6·11-s + 3·15-s − 3·17-s + 2·19-s − 2·21-s + 6·23-s + 4·25-s − 27-s + 3·29-s − 4·31-s − 6·33-s − 6·35-s + 7·37-s + 3·41-s + 10·43-s − 3·45-s + 6·47-s − 3·49-s + 3·51-s + 3·53-s − 18·55-s − 2·57-s − 7·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 0.755·7-s + 1/3·9-s + 1.80·11-s + 0.774·15-s − 0.727·17-s + 0.458·19-s − 0.436·21-s + 1.25·23-s + 4/5·25-s − 0.192·27-s + 0.557·29-s − 0.718·31-s − 1.04·33-s − 1.01·35-s + 1.15·37-s + 0.468·41-s + 1.52·43-s − 0.447·45-s + 0.875·47-s − 3/7·49-s + 0.420·51-s + 0.412·53-s − 2.42·55-s − 0.264·57-s − 0.896·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8112\)    =    \(2^{4} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(64.7746\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8112,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.626774054\)
\(L(\frac12)\) \(\approx\) \(1.626774054\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 13 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68324149444991723459035246514, −7.16544333867618656401147686822, −6.56845934049992962925692890061, −5.76916538150809634598057749350, −4.83631861818704498507312905860, −4.23335734335187302525876558685, −3.83800376698627015915594243148, −2.75638145936118353648420755308, −1.44760055327545164292170854162, −0.72311730529757921960456631601, 0.72311730529757921960456631601, 1.44760055327545164292170854162, 2.75638145936118353648420755308, 3.83800376698627015915594243148, 4.23335734335187302525876558685, 4.83631861818704498507312905860, 5.76916538150809634598057749350, 6.56845934049992962925692890061, 7.16544333867618656401147686822, 7.68324149444991723459035246514

Graph of the $Z$-function along the critical line