Properties

Label 2-8112-1.1-c1-0-133
Degree $2$
Conductor $8112$
Sign $-1$
Analytic cond. $64.7746$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 4·7-s + 9-s − 6·11-s − 2·15-s + 2·17-s − 4·21-s − 8·23-s − 25-s − 27-s + 2·29-s + 8·31-s + 6·33-s + 8·35-s − 8·37-s − 2·41-s − 8·43-s + 2·45-s − 6·47-s + 9·49-s − 2·51-s + 6·53-s − 12·55-s − 2·59-s + 2·61-s + 4·63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1.51·7-s + 1/3·9-s − 1.80·11-s − 0.516·15-s + 0.485·17-s − 0.872·21-s − 1.66·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.43·31-s + 1.04·33-s + 1.35·35-s − 1.31·37-s − 0.312·41-s − 1.21·43-s + 0.298·45-s − 0.875·47-s + 9/7·49-s − 0.280·51-s + 0.824·53-s − 1.61·55-s − 0.260·59-s + 0.256·61-s + 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8112\)    =    \(2^{4} \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(64.7746\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8112,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62388435154143753320558773655, −6.71911048068160975401278977750, −5.87399691516264898974912308043, −5.34889682133396591870852239067, −4.93764513282603762984773328628, −4.14152889229093314145721573936, −2.88884240425384312125711068525, −2.05425280301584421973705353544, −1.43154032935557797298972206503, 0, 1.43154032935557797298972206503, 2.05425280301584421973705353544, 2.88884240425384312125711068525, 4.14152889229093314145721573936, 4.93764513282603762984773328628, 5.34889682133396591870852239067, 5.87399691516264898974912308043, 6.71911048068160975401278977750, 7.62388435154143753320558773655

Graph of the $Z$-function along the critical line