L(s) = 1 | + (−1 − 1.73i)2-s + (−1.99 + 3.46i)4-s + (2.5 − 4.33i)5-s + (−16 − 27.7i)7-s + 7.99·8-s − 10·10-s + (−30 − 51.9i)11-s + (17 − 29.4i)13-s + (−31.9 + 55.4i)14-s + (−8 − 13.8i)16-s − 42·17-s − 76·19-s + (10 + 17.3i)20-s + (−60 + 103. i)22-s + (−12.5 − 21.6i)25-s − 68·26-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + (−0.863 − 1.49i)7-s + 0.353·8-s − 0.316·10-s + (−0.822 − 1.42i)11-s + (0.362 − 0.628i)13-s + (−0.610 + 1.05i)14-s + (−0.125 − 0.216i)16-s − 0.599·17-s − 0.917·19-s + (0.111 + 0.193i)20-s + (−0.581 + 1.00i)22-s + (−0.100 − 0.173i)25-s − 0.512·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6139817137\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6139817137\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + 1.73i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.5 + 4.33i)T \) |
good | 7 | \( 1 + (16 + 27.7i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (30 + 51.9i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-17 + 29.4i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 42T + 4.91e3T^{2} \) |
| 19 | \( 1 + 76T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-3 - 5.19i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-116 + 200. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 134T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-117 + 202. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-206 - 356. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (180 + 311. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 222T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-330 + 571. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-245 - 424. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (406 - 703. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 120T + 3.57e5T^{2} \) |
| 73 | \( 1 - 746T + 3.89e5T^{2} \) |
| 79 | \( 1 + (76 + 131. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (402 + 696. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 678T + 7.04e5T^{2} \) |
| 97 | \( 1 + (97 + 168. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.401769846263524878522839750285, −8.399973783551182880335121994530, −7.80186703663369311866083677071, −6.62892279325052645183199684201, −5.77051940168282604092884616273, −4.40747624410671021806066259051, −3.57733588135989024841331541893, −2.57594961570633295824788850277, −0.883960023705282812159706060518, −0.23041430623214924736688899239,
1.96230643117006595950821303605, 2.76691416567493316497571756869, 4.38247335487342175081173749235, 5.36432603269556976888974606126, 6.34638505553800595651834526157, 6.80570931644698634474431332887, 7.954022952602187373535460372752, 8.877808702958485500081408438070, 9.475256333991774605802000272634, 10.21360463447797102004617943187