L(s) = 1 | + (1 + 1.73i)2-s + (−1.99 + 3.46i)4-s + (−2.5 + 4.33i)5-s + (2 + 3.46i)7-s − 7.99·8-s − 10·10-s + (−24 − 41.5i)11-s + (−1 + 1.73i)13-s + (−3.99 + 6.92i)14-s + (−8 − 13.8i)16-s + 114·17-s + 140·19-s + (−10 − 17.3i)20-s + (48 − 83.1i)22-s + (36 − 62.3i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.223 + 0.387i)5-s + (0.107 + 0.187i)7-s − 0.353·8-s − 0.316·10-s + (−0.657 − 1.13i)11-s + (−0.0213 + 0.0369i)13-s + (−0.0763 + 0.132i)14-s + (−0.125 − 0.216i)16-s + 1.62·17-s + 1.69·19-s + (−0.111 − 0.193i)20-s + (0.465 − 0.805i)22-s + (0.326 − 0.565i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.206869681\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.206869681\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - 1.73i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.5 - 4.33i)T \) |
good | 7 | \( 1 + (-2 - 3.46i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (24 + 41.5i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 114T + 4.91e3T^{2} \) |
| 19 | \( 1 - 140T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-36 + 62.3i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-105 - 181. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (136 - 235. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 334T + 5.06e4T^{2} \) |
| 41 | \( 1 + (99 - 171. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-134 - 232. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-108 - 187. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 - 78T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-120 + 207. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (151 + 261. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (298 - 516. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 768T + 3.57e5T^{2} \) |
| 73 | \( 1 + 478T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-320 - 554. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (174 + 301. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 + 210T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-767 - 1.32e3i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15654237602487405573337490213, −9.042345667320217032631065944274, −8.224241849301056216918337304864, −7.49682792104555461771904144127, −6.66862086101920496331719031501, −5.49414733823382487935011348593, −5.12196319973062219200578936599, −3.45053147291626498129051716096, −3.02986739073575827442992807115, −1.03960538447744075143387245361,
0.64242935669352938397950764797, 1.83626307391308889629290670794, 3.11130975132747923062393873450, 4.07213867728197129802241045458, 5.15419101051553368630762217472, 5.67861809605018058164066081574, 7.34696231272868379192233176262, 7.69031941439357464882675871816, 8.994855848758337873062899141920, 9.880599521252069768472748533219