L(s) = 1 | − i·2-s − 4-s + (−1 + 2i)5-s + i·7-s + i·8-s + (2 + i)10-s − 2·11-s − 6i·13-s + 14-s + 16-s + 2i·17-s − 6·19-s + (1 − 2i)20-s + 2i·22-s + i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.447 + 0.894i)5-s + 0.377i·7-s + 0.353i·8-s + (0.632 + 0.316i)10-s − 0.603·11-s − 1.66i·13-s + 0.267·14-s + 0.250·16-s + 0.485i·17-s − 1.37·19-s + (0.223 − 0.447i)20-s + 0.426i·22-s + 0.208i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1 - 2i)T \) |
good | 7 | \( 1 - iT - 7T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 13 | \( 1 + 6iT - 13T^{2} \) |
| 17 | \( 1 - 2iT - 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 - iT - 23T^{2} \) |
| 29 | \( 1 + 9T + 29T^{2} \) |
| 31 | \( 1 + 2T + 31T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + 11T + 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 - 7iT - 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 - 4T + 59T^{2} \) |
| 61 | \( 1 + 7T + 61T^{2} \) |
| 67 | \( 1 - 11iT - 67T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 + 11iT - 83T^{2} \) |
| 89 | \( 1 + T + 89T^{2} \) |
| 97 | \( 1 - 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17883907488857588694831212536, −8.927895939250911386391102622991, −8.090914453733625316899062029754, −7.38424231783881445130406252641, −6.10521963207707746450126980464, −5.29633122825214424114841254839, −3.95206760983480762547768841836, −3.10427971779357953583827368712, −2.11786822605608749364722969462, 0,
1.86627265350834450046512039765, 3.78168104628012741309522551527, 4.52829153612623436996189583037, 5.35628086966803970879463285667, 6.54201123385877517129664791782, 7.28747656041900917098478454085, 8.193778223586007174045619339017, 8.924112324095231111501790289339, 9.586506805980223172737277751495