L(s) = 1 | + (0.707 + 1.22i)2-s + (−0.999 + 1.73i)4-s + (−4.89 − 0.997i)5-s + (−0.704 + 0.406i)7-s − 2.82·8-s + (−2.24 − 6.70i)10-s + (13.3 − 7.68i)11-s + (5.10 + 2.94i)13-s + (−0.996 − 0.575i)14-s + (−2.00 − 3.46i)16-s − 12.8·17-s + 1.24·19-s + (6.62 − 7.48i)20-s + (18.8 + 10.8i)22-s + (2.39 − 4.15i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.979 − 0.199i)5-s + (−0.100 + 0.0581i)7-s − 0.353·8-s + (−0.224 − 0.670i)10-s + (1.21 − 0.698i)11-s + (0.392 + 0.226i)13-s + (−0.0711 − 0.0410i)14-s + (−0.125 − 0.216i)16-s − 0.758·17-s + 0.0654·19-s + (0.331 − 0.374i)20-s + (0.855 + 0.494i)22-s + (0.104 − 0.180i)23-s + ⋯ |
Λ(s)=(=(810s/2ΓC(s)L(s)(0.522−0.852i)Λ(3−s)
Λ(s)=(=(810s/2ΓC(s+1)L(s)(0.522−0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
810
= 2⋅34⋅5
|
Sign: |
0.522−0.852i
|
Analytic conductor: |
22.0709 |
Root analytic conductor: |
4.69796 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ810(539,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 810, ( :1), 0.522−0.852i)
|
Particular Values
L(23) |
≈ |
1.821462939 |
L(21) |
≈ |
1.821462939 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−1.22i)T |
| 3 | 1 |
| 5 | 1+(4.89+0.997i)T |
good | 7 | 1+(0.704−0.406i)T+(24.5−42.4i)T2 |
| 11 | 1+(−13.3+7.68i)T+(60.5−104.i)T2 |
| 13 | 1+(−5.10−2.94i)T+(84.5+146.i)T2 |
| 17 | 1+12.8T+289T2 |
| 19 | 1−1.24T+361T2 |
| 23 | 1+(−2.39+4.15i)T+(−264.5−458.i)T2 |
| 29 | 1+(−36.9+21.3i)T+(420.5−728.i)T2 |
| 31 | 1+(2.10−3.64i)T+(−480.5−832.i)T2 |
| 37 | 1−70.3iT−1.36e3T2 |
| 41 | 1+(6.09+3.52i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(−35.5+20.5i)T+(924.5−1.60e3i)T2 |
| 47 | 1+(−39.8−69.1i)T+(−1.10e3+1.91e3i)T2 |
| 53 | 1−63.7T+2.80e3T2 |
| 59 | 1+(−31.7−18.3i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(−41.4−71.8i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(−77.0−44.5i)T+(2.24e3+3.88e3i)T2 |
| 71 | 1+69.6iT−5.04e3T2 |
| 73 | 1−89.6iT−5.32e3T2 |
| 79 | 1+(67.0+116.i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1+(54.5+94.4i)T+(−3.44e3+5.96e3i)T2 |
| 89 | 1+137.iT−7.92e3T2 |
| 97 | 1+(−78.4+45.3i)T+(4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16288422018276912849846846285, −8.806163640978881807652917838130, −8.669184985757916299919219421863, −7.53438473828148498129463437883, −6.65766450585646688683355993329, −5.98209471227914911359373996108, −4.60993468227496691120267974576, −4.02335260674913528056436148356, −2.95164571100874786191989904165, −0.932099603229460782758466169489,
0.78493788701566893907115934662, 2.27139735458653082975685804872, 3.62847622748312572550362252916, 4.14936331237756148033578250081, 5.23097645726842980925037425562, 6.56665240917789391788096923166, 7.15045800524744369369433346501, 8.389071179396345288084563587347, 9.091510287179250376346346080968, 10.05936926156666934768444308888