L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.999 + 1.73i)4-s + (−4.24 + 2.64i)5-s + (−11.8 + 6.84i)7-s + 2.82·8-s + (6.24 + 3.32i)10-s + (−10.6 + 6.15i)11-s + (−14.7 − 8.50i)13-s + (16.7 + 9.67i)14-s + (−2.00 − 3.46i)16-s + 6.89·17-s − 7.24·19-s + (−0.346 − 9.99i)20-s + (15.0 + 8.70i)22-s + (−17.3 + 30.1i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.848 + 0.529i)5-s + (−1.69 + 0.977i)7-s + 0.353·8-s + (0.624 + 0.332i)10-s + (−0.969 + 0.559i)11-s + (−1.13 − 0.654i)13-s + (1.19 + 0.691i)14-s + (−0.125 − 0.216i)16-s + 0.405·17-s − 0.381·19-s + (−0.0173 − 0.499i)20-s + (0.685 + 0.395i)22-s + (−0.756 + 1.31i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.207 + 0.978i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.207 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.2461122161\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2461122161\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 1.22i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (4.24 - 2.64i)T \) |
good | 7 | \( 1 + (11.8 - 6.84i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (10.6 - 6.15i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (14.7 + 8.50i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 6.89T + 289T^{2} \) |
| 19 | \( 1 + 7.24T + 361T^{2} \) |
| 23 | \( 1 + (17.3 - 30.1i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-18.3 + 10.5i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-19.1 + 33.0i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 21.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-31.4 - 18.1i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (5.40 - 3.11i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-20.1 - 34.8i)T + (-1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 38.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + (36.0 + 20.8i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-7.52 - 13.0i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (111. + 64.3i)T + (2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 104. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 2.11iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-22.0 - 38.1i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-27.5 - 47.6i)T + (-3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 68.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (87.6 - 50.6i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.933369447760236578170390557726, −9.331659504257992193053940161893, −8.060892410297131555419314410956, −7.54092451314877124607053673261, −6.45275355638705832968510965928, −5.43851261271415473900831965462, −4.12334414334476920317549091466, −2.94399051906611577100944918549, −2.55523594474710831199619177002, −0.17087934155385081822813630987,
0.59573891358505706121519967929, 2.81393725788715210346190998928, 3.96991360697020507313288918671, 4.83245970543263564561203747742, 6.06630321402146009790274767316, 6.96085629642522510578021725670, 7.53999544229502545546858311238, 8.498341823528658141168720608510, 9.286196382897542205465696607985, 10.28956798494027366298111407299