Properties

Label 2-8092-1.1-c1-0-5
Degree $2$
Conductor $8092$
Sign $1$
Analytic cond. $64.6149$
Root an. cond. $8.03834$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.30·3-s − 1.30·5-s − 7-s + 2.30·9-s − 0.605·13-s + 3·15-s − 0.605·19-s + 2.30·21-s − 3.30·25-s + 1.60·27-s − 0.697·31-s + 1.30·35-s − 4.60·37-s + 1.39·39-s + 6.90·41-s + 3.69·43-s − 3.00·45-s − 2.60·47-s + 49-s − 7.30·53-s + 1.39·57-s − 5.21·59-s − 2.90·61-s − 2.30·63-s + 0.788·65-s − 5.30·67-s − 13.8·71-s + ⋯
L(s)  = 1  − 1.32·3-s − 0.582·5-s − 0.377·7-s + 0.767·9-s − 0.167·13-s + 0.774·15-s − 0.138·19-s + 0.502·21-s − 0.660·25-s + 0.308·27-s − 0.125·31-s + 0.220·35-s − 0.757·37-s + 0.223·39-s + 1.07·41-s + 0.563·43-s − 0.447·45-s − 0.380·47-s + 0.142·49-s − 1.00·53-s + 0.184·57-s − 0.678·59-s − 0.372·61-s − 0.290·63-s + 0.0978·65-s − 0.647·67-s − 1.63·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8092\)    =    \(2^{2} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(64.6149\)
Root analytic conductor: \(8.03834\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8092,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4497260155\)
\(L(\frac12)\) \(\approx\) \(0.4497260155\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good3 \( 1 + 2.30T + 3T^{2} \)
5 \( 1 + 1.30T + 5T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 0.605T + 13T^{2} \)
19 \( 1 + 0.605T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + 0.697T + 31T^{2} \)
37 \( 1 + 4.60T + 37T^{2} \)
41 \( 1 - 6.90T + 41T^{2} \)
43 \( 1 - 3.69T + 43T^{2} \)
47 \( 1 + 2.60T + 47T^{2} \)
53 \( 1 + 7.30T + 53T^{2} \)
59 \( 1 + 5.21T + 59T^{2} \)
61 \( 1 + 2.90T + 61T^{2} \)
67 \( 1 + 5.30T + 67T^{2} \)
71 \( 1 + 13.8T + 71T^{2} \)
73 \( 1 + 2.90T + 73T^{2} \)
79 \( 1 + 5.39T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + 9.39T + 89T^{2} \)
97 \( 1 - 2.69T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55535209010803704918505924384, −7.17818593019336037934643177946, −6.13042040401507877114595094373, −6.00728916213457089992248245994, −5.01585384101596546287586421020, −4.45661995383296930312310613812, −3.64207892064731498697424830735, −2.73973253372650843360912489036, −1.51439972219322667315559600030, −0.36289959752324163265750290482, 0.36289959752324163265750290482, 1.51439972219322667315559600030, 2.73973253372650843360912489036, 3.64207892064731498697424830735, 4.45661995383296930312310613812, 5.01585384101596546287586421020, 6.00728916213457089992248245994, 6.13042040401507877114595094373, 7.17818593019336037934643177946, 7.55535209010803704918505924384

Graph of the $Z$-function along the critical line