L(s) = 1 | − 2.30·3-s − 1.30·5-s − 7-s + 2.30·9-s − 0.605·13-s + 3·15-s − 0.605·19-s + 2.30·21-s − 3.30·25-s + 1.60·27-s − 0.697·31-s + 1.30·35-s − 4.60·37-s + 1.39·39-s + 6.90·41-s + 3.69·43-s − 3.00·45-s − 2.60·47-s + 49-s − 7.30·53-s + 1.39·57-s − 5.21·59-s − 2.90·61-s − 2.30·63-s + 0.788·65-s − 5.30·67-s − 13.8·71-s + ⋯ |
L(s) = 1 | − 1.32·3-s − 0.582·5-s − 0.377·7-s + 0.767·9-s − 0.167·13-s + 0.774·15-s − 0.138·19-s + 0.502·21-s − 0.660·25-s + 0.308·27-s − 0.125·31-s + 0.220·35-s − 0.757·37-s + 0.223·39-s + 1.07·41-s + 0.563·43-s − 0.447·45-s − 0.380·47-s + 0.142·49-s − 1.00·53-s + 0.184·57-s − 0.678·59-s − 0.372·61-s − 0.290·63-s + 0.0978·65-s − 0.647·67-s − 1.63·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8092 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4497260155\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4497260155\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + 2.30T + 3T^{2} \) |
| 5 | \( 1 + 1.30T + 5T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + 0.605T + 13T^{2} \) |
| 19 | \( 1 + 0.605T + 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 0.697T + 31T^{2} \) |
| 37 | \( 1 + 4.60T + 37T^{2} \) |
| 41 | \( 1 - 6.90T + 41T^{2} \) |
| 43 | \( 1 - 3.69T + 43T^{2} \) |
| 47 | \( 1 + 2.60T + 47T^{2} \) |
| 53 | \( 1 + 7.30T + 53T^{2} \) |
| 59 | \( 1 + 5.21T + 59T^{2} \) |
| 61 | \( 1 + 2.90T + 61T^{2} \) |
| 67 | \( 1 + 5.30T + 67T^{2} \) |
| 71 | \( 1 + 13.8T + 71T^{2} \) |
| 73 | \( 1 + 2.90T + 73T^{2} \) |
| 79 | \( 1 + 5.39T + 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + 9.39T + 89T^{2} \) |
| 97 | \( 1 - 2.69T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.55535209010803704918505924384, −7.17818593019336037934643177946, −6.13042040401507877114595094373, −6.00728916213457089992248245994, −5.01585384101596546287586421020, −4.45661995383296930312310613812, −3.64207892064731498697424830735, −2.73973253372650843360912489036, −1.51439972219322667315559600030, −0.36289959752324163265750290482,
0.36289959752324163265750290482, 1.51439972219322667315559600030, 2.73973253372650843360912489036, 3.64207892064731498697424830735, 4.45661995383296930312310613812, 5.01585384101596546287586421020, 6.00728916213457089992248245994, 6.13042040401507877114595094373, 7.17818593019336037934643177946, 7.55535209010803704918505924384