Properties

Label 2-8001-1.1-c1-0-182
Degree $2$
Conductor $8001$
Sign $-1$
Analytic cond. $63.8883$
Root an. cond. $7.99301$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 0.904·2-s − 1.18·4-s − 0.974·5-s − 7-s + 2.87·8-s + 0.881·10-s + 1.96·11-s + 2.74·13-s + 0.904·14-s − 0.238·16-s − 1.83·17-s + 2.02·19-s + 1.15·20-s − 1.77·22-s − 4.95·23-s − 4.04·25-s − 2.47·26-s + 1.18·28-s + 5.22·29-s − 1.18·31-s − 5.53·32-s + 1.66·34-s + 0.974·35-s − 0.458·37-s − 1.83·38-s − 2.80·40-s + 4.63·41-s + ⋯
L(s)  = 1  − 0.639·2-s − 0.591·4-s − 0.435·5-s − 0.377·7-s + 1.01·8-s + 0.278·10-s + 0.592·11-s + 0.760·13-s + 0.241·14-s − 0.0596·16-s − 0.445·17-s + 0.464·19-s + 0.257·20-s − 0.378·22-s − 1.03·23-s − 0.809·25-s − 0.486·26-s + 0.223·28-s + 0.970·29-s − 0.212·31-s − 0.979·32-s + 0.284·34-s + 0.164·35-s − 0.0754·37-s − 0.297·38-s − 0.443·40-s + 0.723·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8001\)    =    \(3^{2} \cdot 7 \cdot 127\)
Sign: $-1$
Analytic conductor: \(63.8883\)
Root analytic conductor: \(7.99301\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{8001} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8001,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
127 \( 1 + T \)
good2 \( 1 + 0.904T + 2T^{2} \)
5 \( 1 + 0.974T + 5T^{2} \)
11 \( 1 - 1.96T + 11T^{2} \)
13 \( 1 - 2.74T + 13T^{2} \)
17 \( 1 + 1.83T + 17T^{2} \)
19 \( 1 - 2.02T + 19T^{2} \)
23 \( 1 + 4.95T + 23T^{2} \)
29 \( 1 - 5.22T + 29T^{2} \)
31 \( 1 + 1.18T + 31T^{2} \)
37 \( 1 + 0.458T + 37T^{2} \)
41 \( 1 - 4.63T + 41T^{2} \)
43 \( 1 + 9.80T + 43T^{2} \)
47 \( 1 + 1.05T + 47T^{2} \)
53 \( 1 - 0.354T + 53T^{2} \)
59 \( 1 - 2.99T + 59T^{2} \)
61 \( 1 - 10.7T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 - 15.2T + 73T^{2} \)
79 \( 1 + 10.8T + 79T^{2} \)
83 \( 1 - 2.78T + 83T^{2} \)
89 \( 1 - 5.79T + 89T^{2} \)
97 \( 1 - 14.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68086239325410809870628272131, −6.89926990654265619693604834135, −6.20482920371951429110836441366, −5.43190056653648181437393730382, −4.48101375066224783849435520801, −3.94772018415713156151341274014, −3.27135651639415773382733644527, −1.99009102828662054218624590582, −1.04294021971578570415275325450, 0, 1.04294021971578570415275325450, 1.99009102828662054218624590582, 3.27135651639415773382733644527, 3.94772018415713156151341274014, 4.48101375066224783849435520801, 5.43190056653648181437393730382, 6.20482920371951429110836441366, 6.89926990654265619693604834135, 7.68086239325410809870628272131

Graph of the $Z$-function along the critical line