Properties

Label 2-800-5.4-c5-0-13
Degree $2$
Conductor $800$
Sign $-0.894 - 0.447i$
Analytic cond. $128.307$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 243·9-s + 1.19e3i·13-s + 2.24e3i·17-s − 2.95e3·29-s − 1.22e4i·37-s − 2.09e4·41-s + 1.68e4·49-s − 7.29e3i·53-s + 1.89e4·61-s + 8.88e4i·73-s + 5.90e4·81-s − 5.10e4·89-s − 9.21e4i·97-s − 9.80e4·101-s − 2.46e5·109-s + ⋯
L(s)  = 1  + 9-s + 1.95i·13-s + 1.88i·17-s − 0.651·29-s − 1.47i·37-s − 1.94·41-s + 49-s − 0.356i·53-s + 0.652·61-s + 1.95i·73-s + 0.999·81-s − 0.683·89-s − 0.994i·97-s − 0.955·101-s − 1.98·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(128.307\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :5/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.270753557\)
\(L(\frac12)\) \(\approx\) \(1.270753557\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 243T^{2} \)
7 \( 1 - 1.68e4T^{2} \)
11 \( 1 + 1.61e5T^{2} \)
13 \( 1 - 1.19e3iT - 3.71e5T^{2} \)
17 \( 1 - 2.24e3iT - 1.41e6T^{2} \)
19 \( 1 + 2.47e6T^{2} \)
23 \( 1 - 6.43e6T^{2} \)
29 \( 1 + 2.95e3T + 2.05e7T^{2} \)
31 \( 1 + 2.86e7T^{2} \)
37 \( 1 + 1.22e4iT - 6.93e7T^{2} \)
41 \( 1 + 2.09e4T + 1.15e8T^{2} \)
43 \( 1 - 1.47e8T^{2} \)
47 \( 1 - 2.29e8T^{2} \)
53 \( 1 + 7.29e3iT - 4.18e8T^{2} \)
59 \( 1 + 7.14e8T^{2} \)
61 \( 1 - 1.89e4T + 8.44e8T^{2} \)
67 \( 1 - 1.35e9T^{2} \)
71 \( 1 + 1.80e9T^{2} \)
73 \( 1 - 8.88e4iT - 2.07e9T^{2} \)
79 \( 1 + 3.07e9T^{2} \)
83 \( 1 - 3.93e9T^{2} \)
89 \( 1 + 5.10e4T + 5.58e9T^{2} \)
97 \( 1 + 9.21e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.865183485112014052122778136501, −9.052533305039025467714829190533, −8.252411624352257470782930037893, −7.11706389193744869845964303185, −6.59301053333020968344039660404, −5.50010840423586224670129878272, −4.22288725083518325994894470244, −3.83295438662945671772894708822, −2.07123365537866385116726341342, −1.44123920693509882309558987390, 0.25741620326941965962957600079, 1.23391464300200731199668140643, 2.65278835601502608275604455844, 3.52350676840174299477922582326, 4.82027764880071655049357762733, 5.42917153698859629405464819500, 6.67952714958749669696416758267, 7.45836490995697305659893686496, 8.166694900410464455209788023336, 9.282887394621082613278032723394

Graph of the $Z$-function along the critical line