L(s) = 1 | + (2 + 2i)3-s + (2 − 2i)7-s + 5i·9-s + (1 − i)13-s + (5 + 5i)17-s − 4·19-s + 8·21-s + (2 + 2i)23-s + (−4 + 4i)27-s − 4i·29-s + 4i·31-s + (−1 − i)37-s + 4·39-s + (−6 − 6i)43-s + (−2 + 2i)47-s + ⋯ |
L(s) = 1 | + (1.15 + 1.15i)3-s + (0.755 − 0.755i)7-s + 1.66i·9-s + (0.277 − 0.277i)13-s + (1.21 + 1.21i)17-s − 0.917·19-s + 1.74·21-s + (0.417 + 0.417i)23-s + (−0.769 + 0.769i)27-s − 0.742i·29-s + 0.718i·31-s + (−0.164 − 0.164i)37-s + 0.640·39-s + (−0.914 − 0.914i)43-s + (−0.291 + 0.291i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.16068 + 1.20466i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.16068 + 1.20466i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-2 - 2i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2 + 2i)T - 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (-1 + i)T - 13iT^{2} \) |
| 17 | \( 1 + (-5 - 5i)T + 17iT^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + (-2 - 2i)T + 23iT^{2} \) |
| 29 | \( 1 + 4iT - 29T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 37 | \( 1 + (1 + i)T + 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (6 + 6i)T + 43iT^{2} \) |
| 47 | \( 1 + (2 - 2i)T - 47iT^{2} \) |
| 53 | \( 1 + (-7 + 7i)T - 53iT^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 4T + 61T^{2} \) |
| 67 | \( 1 + (10 - 10i)T - 67iT^{2} \) |
| 71 | \( 1 + 12iT - 71T^{2} \) |
| 73 | \( 1 + (-3 + 3i)T - 73iT^{2} \) |
| 79 | \( 1 + 16T + 79T^{2} \) |
| 83 | \( 1 + (2 + 2i)T + 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-3 - 3i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43811160386740641218102026062, −9.626181625712484079981184380971, −8.557331739005640020914052836296, −8.189337562407795786323827596724, −7.25470210770353773462164029968, −5.81953384772325011291471062080, −4.70361057410788386802092093070, −3.93607327561960163287629937021, −3.16453854697710220546237269357, −1.68588669912474800784623989980,
1.32326887397239178546294212757, 2.37495752714461338768708010697, 3.24478951700895614579558686438, 4.71431384262467874665852686988, 5.85994756202793568258382430565, 6.92319142458831143781788330724, 7.64253639911142376629320775619, 8.451078891250959854399863320179, 8.920870497237094801669080271307, 9.893377643754679860474305996525