Properties

Label 2-800-1.1-c3-0-8
Degree $2$
Conductor $800$
Sign $1$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.0·3-s − 10.5·7-s + 74.9·9-s + 38.9·11-s + 68.9·13-s − 65.9·17-s − 49.4·19-s + 106.·21-s − 164.·23-s − 484.·27-s − 170.·29-s + 166.·31-s − 392.·33-s + 384.·37-s − 696.·39-s − 22.8·41-s + 136.·43-s − 307.·47-s − 230.·49-s + 665.·51-s − 222·53-s + 499.·57-s + 522.·59-s + 393.·61-s − 793.·63-s − 476.·67-s + 1.66e3·69-s + ⋯
L(s)  = 1  − 1.94·3-s − 0.571·7-s + 2.77·9-s + 1.06·11-s + 1.47·13-s − 0.940·17-s − 0.597·19-s + 1.11·21-s − 1.49·23-s − 3.45·27-s − 1.09·29-s + 0.964·31-s − 2.07·33-s + 1.70·37-s − 2.85·39-s − 0.0868·41-s + 0.484·43-s − 0.954·47-s − 0.672·49-s + 1.82·51-s − 0.575·53-s + 1.16·57-s + 1.15·59-s + 0.824·61-s − 1.58·63-s − 0.869·67-s + 2.89·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8274534308\)
\(L(\frac12)\) \(\approx\) \(0.8274534308\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 10.0T + 27T^{2} \)
7 \( 1 + 10.5T + 343T^{2} \)
11 \( 1 - 38.9T + 1.33e3T^{2} \)
13 \( 1 - 68.9T + 2.19e3T^{2} \)
17 \( 1 + 65.9T + 4.91e3T^{2} \)
19 \( 1 + 49.4T + 6.85e3T^{2} \)
23 \( 1 + 164.T + 1.21e4T^{2} \)
29 \( 1 + 170.T + 2.43e4T^{2} \)
31 \( 1 - 166.T + 2.97e4T^{2} \)
37 \( 1 - 384.T + 5.06e4T^{2} \)
41 \( 1 + 22.8T + 6.89e4T^{2} \)
43 \( 1 - 136.T + 7.95e4T^{2} \)
47 \( 1 + 307.T + 1.03e5T^{2} \)
53 \( 1 + 222T + 1.48e5T^{2} \)
59 \( 1 - 522.T + 2.05e5T^{2} \)
61 \( 1 - 393.T + 2.26e5T^{2} \)
67 \( 1 + 476.T + 3.00e5T^{2} \)
71 \( 1 + 4.26T + 3.57e5T^{2} \)
73 \( 1 - 601.T + 3.89e5T^{2} \)
79 \( 1 + 1.07e3T + 4.93e5T^{2} \)
83 \( 1 - 1.13e3T + 5.71e5T^{2} \)
89 \( 1 - 479.T + 7.04e5T^{2} \)
97 \( 1 + 635.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02939280312265186343820705539, −9.314845411941267673506053467332, −8.076067684069914391794491977084, −6.73667998768801904671011632693, −6.32400689987465096505527846556, −5.76756571826014662904509485987, −4.42352260392891573715253644440, −3.86259141016086135758025418260, −1.71821238523930940218950753151, −0.58034343836915827891218111286, 0.58034343836915827891218111286, 1.71821238523930940218950753151, 3.86259141016086135758025418260, 4.42352260392891573715253644440, 5.76756571826014662904509485987, 6.32400689987465096505527846556, 6.73667998768801904671011632693, 8.076067684069914391794491977084, 9.314845411941267673506053467332, 10.02939280312265186343820705539

Graph of the $Z$-function along the critical line