Properties

Label 2-800-1.1-c3-0-6
Degree $2$
Conductor $800$
Sign $1$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 4·7-s − 11·9-s − 43.0·11-s − 21.5·13-s − 43.0·17-s + 129.·19-s − 16·21-s − 52·23-s + 152·27-s − 158·29-s − 172.·31-s + 172.·33-s + 280.·37-s + 86.1·39-s − 170·41-s + 316·43-s + 244·47-s − 327·49-s + 172.·51-s − 495.·53-s − 516.·57-s − 646.·59-s + 82·61-s − 44·63-s + 692·67-s + 208·69-s + ⋯
L(s)  = 1  − 0.769·3-s + 0.215·7-s − 0.407·9-s − 1.18·11-s − 0.459·13-s − 0.614·17-s + 1.56·19-s − 0.166·21-s − 0.471·23-s + 1.08·27-s − 1.01·29-s − 0.998·31-s + 0.909·33-s + 1.24·37-s + 0.353·39-s − 0.647·41-s + 1.12·43-s + 0.757·47-s − 0.953·49-s + 0.473·51-s − 1.28·53-s − 1.20·57-s − 1.42·59-s + 0.172·61-s − 0.0879·63-s + 1.26·67-s + 0.362·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9203116162\)
\(L(\frac12)\) \(\approx\) \(0.9203116162\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 4T + 27T^{2} \)
7 \( 1 - 4T + 343T^{2} \)
11 \( 1 + 43.0T + 1.33e3T^{2} \)
13 \( 1 + 21.5T + 2.19e3T^{2} \)
17 \( 1 + 43.0T + 4.91e3T^{2} \)
19 \( 1 - 129.T + 6.85e3T^{2} \)
23 \( 1 + 52T + 1.21e4T^{2} \)
29 \( 1 + 158T + 2.43e4T^{2} \)
31 \( 1 + 172.T + 2.97e4T^{2} \)
37 \( 1 - 280.T + 5.06e4T^{2} \)
41 \( 1 + 170T + 6.89e4T^{2} \)
43 \( 1 - 316T + 7.95e4T^{2} \)
47 \( 1 - 244T + 1.03e5T^{2} \)
53 \( 1 + 495.T + 1.48e5T^{2} \)
59 \( 1 + 646.T + 2.05e5T^{2} \)
61 \( 1 - 82T + 2.26e5T^{2} \)
67 \( 1 - 692T + 3.00e5T^{2} \)
71 \( 1 - 947.T + 3.57e5T^{2} \)
73 \( 1 - 430.T + 3.89e5T^{2} \)
79 \( 1 + 344.T + 4.93e5T^{2} \)
83 \( 1 - 940T + 5.71e5T^{2} \)
89 \( 1 - 6T + 7.04e5T^{2} \)
97 \( 1 - 1.07e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.913396695943477116669603007854, −9.159567518015310338242740229602, −7.968248129548608375716289098620, −7.40192518091172047622521357494, −6.19116725421520207143112816454, −5.40336468544889791222601563760, −4.77052597500274512273137351323, −3.32003452717456551657242645069, −2.17443893001428793350242158673, −0.53562095733219829535510260831, 0.53562095733219829535510260831, 2.17443893001428793350242158673, 3.32003452717456551657242645069, 4.77052597500274512273137351323, 5.40336468544889791222601563760, 6.19116725421520207143112816454, 7.40192518091172047622521357494, 7.968248129548608375716289098620, 9.159567518015310338242740229602, 9.913396695943477116669603007854

Graph of the $Z$-function along the critical line