L(s) = 1 | + 8.89·3-s − 20.4·7-s + 52.1·9-s − 61.3·11-s − 45.1·13-s + 115.·17-s − 64.8·19-s − 182.·21-s + 6.11·23-s + 224.·27-s − 224.·29-s − 58.6·31-s − 546.·33-s + 99.6·37-s − 402.·39-s − 145.·41-s − 6.73·43-s − 203.·47-s + 77.0·49-s + 1.02e3·51-s − 275.·53-s − 576.·57-s − 262.·59-s − 790.·61-s − 1.06e3·63-s − 141.·67-s + 54.3·69-s + ⋯ |
L(s) = 1 | + 1.71·3-s − 1.10·7-s + 1.93·9-s − 1.68·11-s − 0.964·13-s + 1.64·17-s − 0.782·19-s − 1.89·21-s + 0.0554·23-s + 1.59·27-s − 1.43·29-s − 0.339·31-s − 2.88·33-s + 0.442·37-s − 1.65·39-s − 0.555·41-s − 0.0238·43-s − 0.632·47-s + 0.224·49-s + 2.82·51-s − 0.714·53-s − 1.34·57-s − 0.578·59-s − 1.65·61-s − 2.13·63-s − 0.258·67-s + 0.0948·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 8.89T + 27T^{2} \) |
| 7 | \( 1 + 20.4T + 343T^{2} \) |
| 11 | \( 1 + 61.3T + 1.33e3T^{2} \) |
| 13 | \( 1 + 45.1T + 2.19e3T^{2} \) |
| 17 | \( 1 - 115.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 64.8T + 6.85e3T^{2} \) |
| 23 | \( 1 - 6.11T + 1.21e4T^{2} \) |
| 29 | \( 1 + 224.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 58.6T + 2.97e4T^{2} \) |
| 37 | \( 1 - 99.6T + 5.06e4T^{2} \) |
| 41 | \( 1 + 145.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 6.73T + 7.95e4T^{2} \) |
| 47 | \( 1 + 203.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 275.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 262.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 790.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 141.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 1.04e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.05e3T + 3.89e5T^{2} \) |
| 79 | \( 1 - 826.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.02e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 154.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 414.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.632716843496427546404572400523, −8.557058803411616523961723471767, −7.69305835362538123058926320177, −7.34547720244630895624301375862, −5.94001357815934568666757928753, −4.78698759715157281035192874643, −3.44170017692573098830153285907, −2.94568965488435730607855121222, −1.96897793695259334757241162074, 0,
1.96897793695259334757241162074, 2.94568965488435730607855121222, 3.44170017692573098830153285907, 4.78698759715157281035192874643, 5.94001357815934568666757928753, 7.34547720244630895624301375862, 7.69305835362538123058926320177, 8.557058803411616523961723471767, 9.632716843496427546404572400523