L(s) = 1 | + 5.25·3-s + 9.15·7-s + 0.640·9-s − 11.8·11-s − 41.9·13-s − 75.7·17-s + 2.49·19-s + 48.1·21-s − 17.8·23-s − 138.·27-s − 143.·29-s − 88.6·31-s − 62.5·33-s − 351.·37-s − 220.·39-s + 195.·41-s + 366.·43-s + 58.5·47-s − 259.·49-s − 398.·51-s + 0.374·53-s + 13.0·57-s + 318.·59-s + 446.·61-s + 5.86·63-s − 709.·67-s − 93.8·69-s + ⋯ |
L(s) = 1 | + 1.01·3-s + 0.494·7-s + 0.0237·9-s − 0.326·11-s − 0.895·13-s − 1.08·17-s + 0.0300·19-s + 0.500·21-s − 0.161·23-s − 0.987·27-s − 0.919·29-s − 0.513·31-s − 0.329·33-s − 1.55·37-s − 0.906·39-s + 0.746·41-s + 1.29·43-s + 0.181·47-s − 0.755·49-s − 1.09·51-s + 0.000971·53-s + 0.0304·57-s + 0.703·59-s + 0.937·61-s + 0.0117·63-s − 1.29·67-s − 0.163·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 5.25T + 27T^{2} \) |
| 7 | \( 1 - 9.15T + 343T^{2} \) |
| 11 | \( 1 + 11.8T + 1.33e3T^{2} \) |
| 13 | \( 1 + 41.9T + 2.19e3T^{2} \) |
| 17 | \( 1 + 75.7T + 4.91e3T^{2} \) |
| 19 | \( 1 - 2.49T + 6.85e3T^{2} \) |
| 23 | \( 1 + 17.8T + 1.21e4T^{2} \) |
| 29 | \( 1 + 143.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 88.6T + 2.97e4T^{2} \) |
| 37 | \( 1 + 351.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 195.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 366.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 58.5T + 1.03e5T^{2} \) |
| 53 | \( 1 - 0.374T + 1.48e5T^{2} \) |
| 59 | \( 1 - 318.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 446.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 709.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 1.13e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 85.3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.24e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 926.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 973.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.15e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.191423857486022450388293237036, −8.727643802091740336954517970163, −7.74480492026156818209471389336, −7.17834598261813067902189616785, −5.84911574993641800304492456270, −4.84769014731885239336763609914, −3.81770556558473809071234867541, −2.66891338293960510878320287002, −1.88144327404455317127821058168, 0,
1.88144327404455317127821058168, 2.66891338293960510878320287002, 3.81770556558473809071234867541, 4.84769014731885239336763609914, 5.84911574993641800304492456270, 7.17834598261813067902189616785, 7.74480492026156818209471389336, 8.727643802091740336954517970163, 9.191423857486022450388293237036