Properties

Label 2-800-1.1-c3-0-5
Degree $2$
Conductor $800$
Sign $1$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.25·3-s − 9.15·7-s + 0.640·9-s + 11.8·11-s − 41.9·13-s − 75.7·17-s − 2.49·19-s + 48.1·21-s + 17.8·23-s + 138.·27-s − 143.·29-s + 88.6·31-s − 62.5·33-s − 351.·37-s + 220.·39-s + 195.·41-s − 366.·43-s − 58.5·47-s − 259.·49-s + 398.·51-s + 0.374·53-s + 13.0·57-s − 318.·59-s + 446.·61-s − 5.86·63-s + 709.·67-s − 93.8·69-s + ⋯
L(s)  = 1  − 1.01·3-s − 0.494·7-s + 0.0237·9-s + 0.326·11-s − 0.895·13-s − 1.08·17-s − 0.0300·19-s + 0.500·21-s + 0.161·23-s + 0.987·27-s − 0.919·29-s + 0.513·31-s − 0.329·33-s − 1.55·37-s + 0.906·39-s + 0.746·41-s − 1.29·43-s − 0.181·47-s − 0.755·49-s + 1.09·51-s + 0.000971·53-s + 0.0304·57-s − 0.703·59-s + 0.937·61-s − 0.0117·63-s + 1.29·67-s − 0.163·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6718797926\)
\(L(\frac12)\) \(\approx\) \(0.6718797926\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 5.25T + 27T^{2} \)
7 \( 1 + 9.15T + 343T^{2} \)
11 \( 1 - 11.8T + 1.33e3T^{2} \)
13 \( 1 + 41.9T + 2.19e3T^{2} \)
17 \( 1 + 75.7T + 4.91e3T^{2} \)
19 \( 1 + 2.49T + 6.85e3T^{2} \)
23 \( 1 - 17.8T + 1.21e4T^{2} \)
29 \( 1 + 143.T + 2.43e4T^{2} \)
31 \( 1 - 88.6T + 2.97e4T^{2} \)
37 \( 1 + 351.T + 5.06e4T^{2} \)
41 \( 1 - 195.T + 6.89e4T^{2} \)
43 \( 1 + 366.T + 7.95e4T^{2} \)
47 \( 1 + 58.5T + 1.03e5T^{2} \)
53 \( 1 - 0.374T + 1.48e5T^{2} \)
59 \( 1 + 318.T + 2.05e5T^{2} \)
61 \( 1 - 446.T + 2.26e5T^{2} \)
67 \( 1 - 709.T + 3.00e5T^{2} \)
71 \( 1 - 1.13e3T + 3.57e5T^{2} \)
73 \( 1 - 85.3T + 3.89e5T^{2} \)
79 \( 1 - 1.24e3T + 4.93e5T^{2} \)
83 \( 1 + 926.T + 5.71e5T^{2} \)
89 \( 1 - 973.T + 7.04e5T^{2} \)
97 \( 1 - 1.15e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.935247017009211090009068430803, −9.166729576369351013493657853751, −8.183510587535800072915451686732, −6.93810111890689030596897397881, −6.47507352278813629030105555694, −5.41486836552192831609554856561, −4.68640421491316272443366487233, −3.42823359661501071830964070784, −2.10729250665132853016280611070, −0.46142392425618739727319560274, 0.46142392425618739727319560274, 2.10729250665132853016280611070, 3.42823359661501071830964070784, 4.68640421491316272443366487233, 5.41486836552192831609554856561, 6.47507352278813629030105555694, 6.93810111890689030596897397881, 8.183510587535800072915451686732, 9.166729576369351013493657853751, 9.935247017009211090009068430803

Graph of the $Z$-function along the critical line