L(s) = 1 | + 2·3-s − 6·7-s − 23·9-s + 60·11-s − 50·13-s + 30·17-s + 40·19-s − 12·21-s − 178·23-s − 100·27-s + 166·29-s + 20·31-s + 120·33-s − 10·37-s − 100·39-s − 250·41-s − 142·43-s − 214·47-s − 307·49-s + 60·51-s − 490·53-s + 80·57-s − 800·59-s + 250·61-s + 138·63-s + 774·67-s − 356·69-s + ⋯ |
L(s) = 1 | + 0.384·3-s − 0.323·7-s − 0.851·9-s + 1.64·11-s − 1.06·13-s + 0.428·17-s + 0.482·19-s − 0.124·21-s − 1.61·23-s − 0.712·27-s + 1.06·29-s + 0.115·31-s + 0.633·33-s − 0.0444·37-s − 0.410·39-s − 0.952·41-s − 0.503·43-s − 0.664·47-s − 0.895·49-s + 0.164·51-s − 1.26·53-s + 0.185·57-s − 1.76·59-s + 0.524·61-s + 0.275·63-s + 1.41·67-s − 0.621·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 2 T + p^{3} T^{2} \) |
| 7 | \( 1 + 6 T + p^{3} T^{2} \) |
| 11 | \( 1 - 60 T + p^{3} T^{2} \) |
| 13 | \( 1 + 50 T + p^{3} T^{2} \) |
| 17 | \( 1 - 30 T + p^{3} T^{2} \) |
| 19 | \( 1 - 40 T + p^{3} T^{2} \) |
| 23 | \( 1 + 178 T + p^{3} T^{2} \) |
| 29 | \( 1 - 166 T + p^{3} T^{2} \) |
| 31 | \( 1 - 20 T + p^{3} T^{2} \) |
| 37 | \( 1 + 10 T + p^{3} T^{2} \) |
| 41 | \( 1 + 250 T + p^{3} T^{2} \) |
| 43 | \( 1 + 142 T + p^{3} T^{2} \) |
| 47 | \( 1 + 214 T + p^{3} T^{2} \) |
| 53 | \( 1 + 490 T + p^{3} T^{2} \) |
| 59 | \( 1 + 800 T + p^{3} T^{2} \) |
| 61 | \( 1 - 250 T + p^{3} T^{2} \) |
| 67 | \( 1 - 774 T + p^{3} T^{2} \) |
| 71 | \( 1 - 100 T + p^{3} T^{2} \) |
| 73 | \( 1 - 230 T + p^{3} T^{2} \) |
| 79 | \( 1 + 1320 T + p^{3} T^{2} \) |
| 83 | \( 1 + 982 T + p^{3} T^{2} \) |
| 89 | \( 1 - 874 T + p^{3} T^{2} \) |
| 97 | \( 1 - 310 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.596848424839183716404589231099, −8.587061109208211126987779930018, −7.87404551259007650910708143823, −6.75831225063318689389613440670, −6.06005784407559692167464539717, −4.90233977145837282438075819577, −3.77211899018342793793024595485, −2.88510278487327092138604608187, −1.59813495161263197031755772634, 0,
1.59813495161263197031755772634, 2.88510278487327092138604608187, 3.77211899018342793793024595485, 4.90233977145837282438075819577, 6.06005784407559692167464539717, 6.75831225063318689389613440670, 7.87404551259007650910708143823, 8.587061109208211126987779930018, 9.596848424839183716404589231099