Properties

Label 2-800-1.1-c3-0-21
Degree $2$
Conductor $800$
Sign $-1$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.23·3-s − 33.5·7-s + 58.3·9-s + 310.·21-s + 73.8·23-s − 289.·27-s + 306·29-s − 460.·41-s + 563.·43-s + 41.1·47-s + 785.·49-s − 40.2·61-s − 1.95e3·63-s − 1.16·67-s − 682.·69-s + 1.09e3·81-s − 989.·83-s − 2.82e3·87-s − 1.38e3·89-s − 378·101-s − 663.·103-s + 1.32e3·107-s + 1.97e3·109-s + ⋯
L(s)  = 1  − 1.77·3-s − 1.81·7-s + 2.15·9-s + 3.22·21-s + 0.669·23-s − 2.06·27-s + 1.95·29-s − 1.75·41-s + 1.99·43-s + 0.127·47-s + 2.29·49-s − 0.0844·61-s − 3.91·63-s − 0.00212·67-s − 1.19·69-s + 1.50·81-s − 1.30·83-s − 3.48·87-s − 1.65·89-s − 0.372·101-s − 0.634·103-s + 1.20·107-s + 1.73·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 9.23T + 27T^{2} \)
7 \( 1 + 33.5T + 343T^{2} \)
11 \( 1 + 1.33e3T^{2} \)
13 \( 1 + 2.19e3T^{2} \)
17 \( 1 + 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 - 73.8T + 1.21e4T^{2} \)
29 \( 1 - 306T + 2.43e4T^{2} \)
31 \( 1 + 2.97e4T^{2} \)
37 \( 1 + 5.06e4T^{2} \)
41 \( 1 + 460.T + 6.89e4T^{2} \)
43 \( 1 - 563.T + 7.95e4T^{2} \)
47 \( 1 - 41.1T + 1.03e5T^{2} \)
53 \( 1 + 1.48e5T^{2} \)
59 \( 1 + 2.05e5T^{2} \)
61 \( 1 + 40.2T + 2.26e5T^{2} \)
67 \( 1 + 1.16T + 3.00e5T^{2} \)
71 \( 1 + 3.57e5T^{2} \)
73 \( 1 + 3.89e5T^{2} \)
79 \( 1 + 4.93e5T^{2} \)
83 \( 1 + 989.T + 5.71e5T^{2} \)
89 \( 1 + 1.38e3T + 7.04e5T^{2} \)
97 \( 1 + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.843793468558168467740768141180, −8.791873130240302564114347326178, −7.25614478151514303450426943562, −6.59947875026069205621554412768, −6.05905876754360656004394905071, −5.15282062620040149458430425516, −4.11713957347578463943351156022, −2.89194778919852650489326717125, −0.979881847225025387591293291526, 0, 0.979881847225025387591293291526, 2.89194778919852650489326717125, 4.11713957347578463943351156022, 5.15282062620040149458430425516, 6.05905876754360656004394905071, 6.59947875026069205621554412768, 7.25614478151514303450426943562, 8.791873130240302564114347326178, 9.843793468558168467740768141180

Graph of the $Z$-function along the critical line