Properties

Label 2-800-1.1-c3-0-11
Degree $2$
Conductor $800$
Sign $1$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·9-s − 92·13-s + 104·17-s + 130·29-s + 396·37-s + 230·41-s − 343·49-s + 572·53-s − 830·61-s + 592·73-s + 729·81-s + 1.67e3·89-s + 1.81e3·97-s + 598·101-s − 1.74e3·109-s + 1.32e3·113-s + 2.48e3·117-s + ⋯
L(s)  = 1  − 9-s − 1.96·13-s + 1.48·17-s + 0.832·29-s + 1.75·37-s + 0.876·41-s − 49-s + 1.48·53-s − 1.74·61-s + 0.949·73-s + 81-s + 1.98·89-s + 1.90·97-s + 0.589·101-s − 1.53·109-s + 1.10·113-s + 1.96·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.534950159\)
\(L(\frac12)\) \(\approx\) \(1.534950159\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + p^{3} T^{2} \)
7 \( 1 + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
13 \( 1 + 92 T + p^{3} T^{2} \)
17 \( 1 - 104 T + p^{3} T^{2} \)
19 \( 1 + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 - 130 T + p^{3} T^{2} \)
31 \( 1 + p^{3} T^{2} \)
37 \( 1 - 396 T + p^{3} T^{2} \)
41 \( 1 - 230 T + p^{3} T^{2} \)
43 \( 1 + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 - 572 T + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 + 830 T + p^{3} T^{2} \)
67 \( 1 + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 - 592 T + p^{3} T^{2} \)
79 \( 1 + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 - 1670 T + p^{3} T^{2} \)
97 \( 1 - 1816 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.826330107220046416643218109512, −9.163695757124538940126454600345, −7.984700761173765800339336383560, −7.51096866893660098059935653888, −6.29917929288157783502469485986, −5.40999718762615467838351540179, −4.58917072611100257682175456072, −3.17887520547333551337684784309, −2.36771612971197899888958510063, −0.67342500078724379311019811573, 0.67342500078724379311019811573, 2.36771612971197899888958510063, 3.17887520547333551337684784309, 4.58917072611100257682175456072, 5.40999718762615467838351540179, 6.29917929288157783502469485986, 7.51096866893660098059935653888, 7.984700761173765800339336383560, 9.163695757124538940126454600345, 9.826330107220046416643218109512

Graph of the $Z$-function along the critical line