L(s) = 1 | + (−1.38 + 0.307i)2-s + 2.85·3-s + (1.81 − 0.849i)4-s + (−1.71 − 1.43i)5-s + (−3.94 + 0.879i)6-s + (−0.458 + 0.458i)7-s + (−2.23 + 1.73i)8-s + 5.15·9-s + (2.80 + 1.45i)10-s + (−0.492 − 0.492i)11-s + (5.17 − 2.42i)12-s + 4.52i·13-s + (0.492 − 0.774i)14-s + (−4.89 − 4.09i)15-s + (2.55 − 3.07i)16-s + (−3.12 + 3.12i)17-s + ⋯ |
L(s) = 1 | + (−0.976 + 0.217i)2-s + 1.64·3-s + (0.905 − 0.424i)4-s + (−0.766 − 0.641i)5-s + (−1.60 + 0.358i)6-s + (−0.173 + 0.173i)7-s + (−0.791 + 0.611i)8-s + 1.71·9-s + (0.888 + 0.459i)10-s + (−0.148 − 0.148i)11-s + (1.49 − 0.700i)12-s + 1.25i·13-s + (0.131 − 0.207i)14-s + (−1.26 − 1.05i)15-s + (0.638 − 0.769i)16-s + (−0.758 + 0.758i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0200i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0200i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.898087 + 0.00899030i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.898087 + 0.00899030i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 - 0.307i)T \) |
| 5 | \( 1 + (1.71 + 1.43i)T \) |
good | 3 | \( 1 - 2.85T + 3T^{2} \) |
| 7 | \( 1 + (0.458 - 0.458i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.492 + 0.492i)T + 11iT^{2} \) |
| 13 | \( 1 - 4.52iT - 13T^{2} \) |
| 17 | \( 1 + (3.12 - 3.12i)T - 17iT^{2} \) |
| 19 | \( 1 + (4.04 + 4.04i)T + 19iT^{2} \) |
| 23 | \( 1 + (1.80 + 1.80i)T + 23iT^{2} \) |
| 29 | \( 1 + (-3.83 + 3.83i)T - 29iT^{2} \) |
| 31 | \( 1 - 0.139iT - 31T^{2} \) |
| 37 | \( 1 + 5.84iT - 37T^{2} \) |
| 41 | \( 1 - 4.55iT - 41T^{2} \) |
| 43 | \( 1 + 7.49iT - 43T^{2} \) |
| 47 | \( 1 + (-4.14 - 4.14i)T + 47iT^{2} \) |
| 53 | \( 1 - 2.75T + 53T^{2} \) |
| 59 | \( 1 + (-3.62 + 3.62i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.72 - 3.72i)T + 61iT^{2} \) |
| 67 | \( 1 + 3.32iT - 67T^{2} \) |
| 71 | \( 1 - 1.37T + 71T^{2} \) |
| 73 | \( 1 + (-2.55 + 2.55i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.86T + 79T^{2} \) |
| 83 | \( 1 - 14.4T + 83T^{2} \) |
| 89 | \( 1 - 3.35T + 89T^{2} \) |
| 97 | \( 1 + (4.95 - 4.95i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.70163809646811249694947051059, −13.49726666599547191693869829338, −12.24657568654827227753437136085, −10.87355768066164716680751495856, −9.342009555296052050996887091755, −8.753160246570514032170362482883, −7.969638826176142879567816883993, −6.71516230036312236492763649200, −4.16619993438205904243084955684, −2.28443127955614854008954789119,
2.58202536610785759150904979431, 3.68481460562402221746409382995, 6.86453037199916957470210154737, 7.901649370793517205816128890697, 8.534002622240983379271008313472, 9.864848918398146468630431555918, 10.70895348002835505541852470220, 12.19500905750124686572094158962, 13.36529029365862882527797706377, 14.70995917268749808985698972704